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Abstract

This paper proposes and theoretically justifies bootstrap methods for regressions where some
of the regressors are factors estimated from a large panel of data. We derive our results under the
assumption that

√
T/N → c, where 0 ≤ c <∞ (N and T are the cross-sectional and the time series

dimensions, respectively), thus allowing for the possibility that factor estimation error enters the
limiting distribution of the OLS estimator as an asymptotic bias term (as was recently discussed
by Ludvigson and Ng (2011)). We consider general residual-based bootstrap methods and provide
a set of high-level conditions on the bootstrap residuals and on the idiosyncratic errors such that
the bootstrap distribution of a rotated OLS estimator is consistent. We subsequently verify these
conditions for a simple wild bootstrap residual-based procedure.
Keywords: factor model, bootstrap, asymptotic bias.

1 Introduction

Factor-augmented regressions where some of the regressors are estimated from a large set of data

are increasingly popular in empirical work. Inference in these models is complicated by the fact that

the regressors are estimated and thus measured with error. Recently, Bai and Ng (2006) derived the

asymptotic distribution of the OLS estimator in this case under a set of standard regularity conditions.

In particular, they show that the asymptotic distribution of the OLS estimator is unaffected by the

estimation of the factors when
√
T/N → 0, where N and T are the cross-sectional and the time series

dimensions, respectively. While their simulation study does not consider inference on the coeffi cients

themselves (they look at the conditional mean and forecast), they report noticeable size distortions in

some situations.
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The main contribution of this paper is to propose and theoretically justify bootstrap methods

for inference in the context of the factor-augmented regression model. A few other contributions

consider the validity of the bootstrap in this context. Corradi and Swanson (2011) consider the

bootstrap for forecast stability tests with factors, while Yamamoto (2011) considers the bootstrap for

factor-augmented vector autoregressions (FAVAR) proposed by Boivin and Bernanke (2003). Finally,

Shintani and Guo (2011) prove the validity of the bootstrap to carry out inference on the persistence

of factors. Recent empirical applications of the bootstrap include Ludvigson and Ng (2007, 2009,2011)

and Gospodinov and Ng (2011), where the bootstrap has been used in the context of predictability

tests based on factor-augmented regressions without theoretical justification.

Our main contribution is to establish the first order asymptotic validity of the bootstrap for factor-

augmented regression models under assumptions similar to those of Bai and Ng (2006) but without the

condition that
√
T/N → 0. Specifically, we assume that

√
T/N → c, where 0 ≤ c <∞, thus allowing

for the possibility that factor estimation error affects the limiting distribution of the OLS estimator.

As it turns out, when c > 0, an asymptotic bias term appears in the distribution, reflecting the

contribution of factors estimation uncertainty. This bias problem was recently discussed by Ludvigson

and Ng (2011), who proposed an analytical bias correction procedure. Instead, here we focus on the

bootstrap and provide a set of conditions under which it can reproduce the limiting distribution of

the OLS estimator, including the bias term.

The bootstrap method we propose is made up of two main steps. In a first step, we obtain a

bootstrap panel data set from which we estimate the bootstrap factors by principal components.

The bootstrap panel observations are generated by adding the estimated common components from

the original panel and bootstrap idiosyncratic residuals. In a second step, we generate a bootstrap

version of the response variable by again relying on a residual-based bootstrap where the bootstrap

observations of the dependent variable are obtained by summing the estimated regression mean and

a bootstrap regression residual. We provide a set of high level conditions on these bootstrap residuals

and idiosyncratic errors that allow us to characterize the limiting distribution of the bootstrap OLS

estimator under the assumption that
√
T/N → c, where 0 ≤ c < ∞. These high level conditions

essentially require that the bootstrap idiosyncratic errors be weakly dependent across individuals and

over time and that the bootstrap regression scores satisfy a central limit theorem. We then verify these

high level conditions for a residual-based wild bootstrap scheme under a stronger set of conditions.

A crucial result in proving the first order asymptotic validity of the bootstrap is the consistency of

the bootstrap principal component estimator. Given our residual-based bootstrap, the “latent”factors

underlying the bootstrap data generating process (DGP) are given by the estimated factors. These

are not identified by the bootstrap principal component estimator due to the well-known identification

problem of factor models. However, contrary to the rotation indeterminacy problem that affects the

principal component estimator, this indeterminacy is easily resolved in the bootstrap world, where the

bootstrap rotation matrix depends on bootstrap population values that are functions of the original
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data. As a consequence, to bootstrap the distribution of OLS estimator, our proposal is to rotate the

bootstrap OLS estimator using the feasible bootstrap rotation matrix. This amounts to sign-adjusting

the bootstrap OLS regression estimates asymptotically.

The rest of the paper is organized as follows. In Section 2, we first describe the setup and the

assumptions, and then derive the asymptotic theory of the OLS estimator when
√
T/N → c. In Section

3, we introduce the residual-based bootstrap method and characterize a set of conditions under which

the bootstrap distribution consistency follows. Section 4 proposes a wild bootstrap implementation of

the residual-based bootstrap and proves its consistency. Section 5 discusses the Monte Carlo results

and Section 6 concludes. Three mathematical appendices are included. Appendix A contains the

proofs of the results in Section 2, Appendix B the proofs of the results in Section 3, and Appendix C

the proofs of the results in Section 4.

2 Asymptotic theory when
√
T/N → c, where 0 ≤ c <∞

We consider the following regression model

yt+h = α′Ft + β′Wt + εt+h, t = 1, . . . , T − h, (1)

where h ≥ 0. The q observed regressors are contained in Wt. The r unobserved regressors Ft are the

common factors in the following panel factor model,

Xit = λ′iFt + eit, i = 1, . . . , N, t = 1, . . . , T, (2)

where the r× 1 vector λi contains the factor loadings and eit is an idiosyncratic error term. In matrix

form, we can write (2) as

X = FΛ′ + e,

where X is a T ×N matrix of stationary data, F = (F1, . . . , FT )′ is T × r, r is the number of common
factors, Λ = (λ1, . . . , λN )′ is N × r, and e is T ×N.

The factor-augmented regression model described in (1) and (2) has recently attracted a lot of

attention in econometrics. One of the first papers to discuss this model in the forecasting context

was Stock and Watson (2002). Recent empirical applications include Ludvigson and Ng (2007) who

consider predictive regressions of excess stock returns and augment the usual set of predictors by

including estimated factors from a large panel of macro and financial variables, Ludvigson and Ng

(2009,2011) who consider this approach in the context of predictive regressions of bond excess returns,

Gospodinov and Ng (2011) who study predictive regressions for inflation using principal components

from a panel of commodity convenience yields, and Eichengreen, Mody, Nedeljkovic, and Sarno (2012)

who use common factors extracted from credit default swap (CDS) spreads during the recent financial

crisis to look at spillovers across banks.

Estimation proceeds in two steps. Given X, we estimate F and Λ with the method of principal
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components. In particular, F is estimated with the T × r matrix F̃ =
(
F̃1 . . . F̃T

)′
composed

of
√
T times the eigenvectors corresponding to the r largest eigenvalues of of XX ′/TN (arranged in

decreasing order), where the normalization F̃ ′F̃
T = Ir is used. The matrix containing the estimated

loadings is then Λ̃ =
(
λ̃1, . . . , λ̃N

)′
= X ′F̃

(
F̃ ′F̃

)−1
= X ′F̃ /T.

In the second step, we run an OLS regression of yt+h on ẑt =
(
F̃ ′t W ′t

)′
, i.e. we compute

δ̂ ≡
(
α̂

β̂

)
=

(
T−h∑
t=1

ẑtẑ
′
t

)−1 T−h∑
t=1

ẑtyt+h, (3)

where δ̂ is p× 1 with p = r + q.

As is well known in this literature, the principal components F̃t can only consistently estimate a

transformation of the true factors Ft, given by HFt, where H is a rotation matrix defined as

H = Ṽ −1 F̃
′F

T

Λ′Λ

N
, (4)

where Ṽ is the r × r diagonal matrix containing on the main diagonal the r largest eigenvalues of
XX ′/NT , in decreasing order, see Bai (2003).

One important implication is that δ̂ consistently estimates δ ≡
(
α′H−1 β′

)′
, and not

(
α′ β′

)′
.

In particular, given (1), adding and subtracting appropriately yields

yt+h =
(
α′H−1 β′

)︸ ︷︷ ︸
=δ′

(
F̃t
Wt

)
︸ ︷︷ ︸

=ẑt

+ α′H−1
(
HFt − F̃t

)
+ εt+h,

or, equivalently,

yt+h = ẑ′tδ + α′H−1
(
HFt − F̃t

)
+ εt+h, (5)

where the second term represents the contribution from estimating the factors.

Recently, Bai and Ng (2006) derived the asymptotic distribution of
√
T
(
δ̂ − δ

)
under a set of

regularity conditions and the assumption that
√
T/N → 0. Our goal in this section is to derive the

limiting distribution of δ̂ under the assumption that
√
T/N → c, where c is not necessarily zero. We

use the following assumptions, which are similar to Bai’s (2003) assumptions and slightly weaker than

the Bai and Ng (2006) assumptions. We let zt =
(
F ′t W ′t

)′
, where zt is p× 1, with p = r + q.

Assumption 1 - Factors and factor loadings

(a) E ‖Ft‖4 ≤M and 1
T

∑T
t=1 FtF

′
t →P ΣF > 0, where ΣF is a non-random r × r matrix.

(b) The loadings λi are either deterministic such that ‖λi‖ ≤M , or stochastic such that E ‖λi‖4 ≤M.

In either case, Λ′Λ/N →P ΣΛ > 0, where ΣΛ is a non-random matrix.

(c) The eigenvalues of the r × r matrix (ΣΛΣF ) are distinct.

Assumption 2 - Time and cross section dependence and heteroskedasticity
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(a) E (eit) = 0, E |eit|8 ≤M.

(b) E (eitejs) = σij,ts, |σij,ts| ≤ σ̄ij for all (t, s) and |σij,ts| ≤ τ ts for all (i, j) such that 1
N

∑N
i,j=1 σ̄ij ≤

M, 1
T

∑T
t,s=1 τ ts ≤M , and 1

NT

∑
t,s,i,j |σij,ts| ≤M.

(c) For every (t, s), E
∣∣∣N−1/2

∑N
i=1 (eiteis − E (eiteis))

∣∣∣4 ≤M.

Assumption 3 - Moments and weak dependence among {zt}, {λi} and {eit}.

(a) E
(

1
N

∑N
i=1

∥∥∥ 1√
T

∑T
t=1 Fteit

∥∥∥2
)
≤M , where E (Fteit) = 0 for all (i, t).

(b) For each t, E
∥∥∥ 1√

TN

∑T
s=1

∑N
i=1 zs (eiteis − E (eiteis))

∥∥∥2
≤M, where zs =

(
F ′s W ′s

)′
.

(c) E
∥∥∥ 1√

NT

∑T
t=1 zte

′
tΛ
∥∥∥2
≤M , where E

(
ztλ
′
ieit
)

= 0 for all (i, t).

(d) E
(

1
T

∑T
t=1

∥∥∥ 1√
N

∑N
i=1 λieit

∥∥∥2
)
≤M, where E (λieit) = 0 for all (i, t).

(e) As N,T → ∞, 1
TN

∑T
t=1

∑N
i=1

∑N
j=1 λiλ

′
jeitejt − Γ →P 0, where Γ ≡ limN,T→∞

1
T

∑T
t=1 Γt > 0,

and Γt ≡ V ar
(

1√
N

∑N
i=1 λieit

)
.

Assumption 4 - weak dependence between idiosyncratic errors and regression errors

(a) For each t and h ≥ 0, E
∣∣∣ 1√

TN

∑T−h
s=1

∑N
i=1 εs+h (eiteis − E (eiteis))

∣∣∣2 ≤M.

(b) E
∥∥∥ 1√

NT

∑T−h
t=1

∑N
i=1 λieitεt+h

∥∥∥2
≤M , where E (λieitεt+h) = 0 for all (i, t) .

Assumption 5 - moments and CLT for the score vector

(a) E (εt+h) = 0 and E |εt+h|2 < M.

(b) E ‖zt‖4 ≤M and 1
T

∑T
t=1 ztz

′
t →P Σzz > 0.

(c) As T →∞, 1√
T

∑T−h
t=1 ztεt+h →d N (0,Ω) , where E

∥∥∥ 1√
T

∑T−h
t=1 ztεt+h

∥∥∥2
< M , and

Ω ≡ limT→∞ V ar
(

1√
T

∑T−h
t=1 ztεt+h

)
> 0.

Assumption 1(a) imposes the assumption that factors are non-degenerate. Assumption 1(b) ensures

that each factor contributes non-trivially to the variance of Xt, i.e. the factors are pervasive and affect

all cross sectional units. These assumptions ensure that there are r identifiable factors in the model.

Recently, Onatski (2011) considers a class of “weak” factor models, where the factor loadings are

modeled as local to zero. Under this assumption, the estimated factors are no longer consistent for

the unobserved (rotated) factors. In this paper, we do not consider this possibility. Assumption 1(c)

ensures that Q ≡ p lim
(
F̃ ′F/T

)
is unique. Without this assumption, Q is only determined up to

orthogonal transformations. See Bai (2003, proof of his Proposition 1).
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Assumption 2 imposes weak cross-sectional and serial dependence conditions on the idiosyncratic

error term eit. In particular, we allow for the possibility that eit is dependent across individual units

and over time, but we require that the degree of dependence decreases as the time and the cross

sectional distance (regardless of how it is defined) between observations increases. This assumption is

compatible with the approximate factor model of Chamberlain and Rothschild (1983) and Connor and

Korajczyk (1986, 1993), in which cross-sectional units are weakly correlated. Assumption 2 allows for

heteroskedasticity in both dimensions and requires the idiosyncratic error term to have finite eighth

moments.

Assumption 3 restricts the degree of dependence among the vector of regressors {zt}, the factor
loadings {λi} and the idiosyncratic error terms {eit}. If we assume that {zt}, {λi} and {eit} are
mutually independent (as in Bai and Ng (2006)), then Assumptions 3(a), 3(c) with zt = Ft and 3(d)

are implied by Assumptions 1 and 2. Similarly, Assumption 3(b) holds if we assume that {zt} and
{eit} are independent and the following weak dependence condition on {eit} holds. For each t,

1

T 2N

N∑
i=1

T∑
s,q=1

|Cov (eiteis, eiteiq)| ≤M. (6)

For a similar assumption, see Bai (2009, Assumption C.4). This assumption holds if eit is i.i.d. over

i and t and E
(
e4
it

)
< M. Assumptions 3(a)-3(c) are equivalent to Assumptions D, F1 and F2 of Bai

(2003) when zt = Ft.

To describe Assumption 3(e), for each t, let

φt ≡
1√
N

N∑
i=1

λieit, and Γt ≡ V ar (φt) = E
(
φtφ
′
t

)
,

since we assume that E (λieit) = 0 for all (i, t). Assumption 3(e) requires that 1
T

∑T
t=1

[
φtφ
′
t − E

(
φtφ
′
t

)]
converges in probability to zero. This follows under weak dependence conditions on {λieit} over (i, t).

Assumption 4 imposes weak dependence between the idiosyncratic errors and the regression errors.

Part (a) holds if {eit} is independent of {εt} and the weak dependence condition (6) holds. Similarly,
part (b) holds if {λi} , {eis} and {εt} are three mutually independent groups of random variables and

Assumption 2 holds.

Assumption 5 imposes moment conditions on {εt+h}, on {zt} and on the score vector {ztεt+h}.
Part b) requires {ztz′t} to satisfy a law of large numbers. Part c) requires the score to satisfy a

central limit theorem, where Ω denotes the limiting variance of the scaled average of the scores. The

dependence structure of the scores {ztεt+h} dictates the form of the covariance matrix estimator to be

used for inference on δ. For instance, Bai and Ng (2006) assume that Ω = lim 1
T

∑T−h
t=1 E

(
ztz
′
tε

2
t+h

)
,

and the appropriate covariance matrix estimator is a heteroskedasticity robust variance estimator. As

we will see later, the form of Ω will also dictate the type of bootstrap we should use.

Given Assumptions 1-5, we can state our main result as follows. We introduce the following
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notation:

H0 ≡ p limH = V −1QΣΛ, Q ≡ p lim

(
F̃ ′F

T

)
, V ≡ p lim Ṽ , and

Φ0 ≡ diag (H0, Iq) .

Additionally, we let ΣWF = E (WtF
′
t).

Theorem 2.1 Let Assumptions 1-5 hold. If
√
T/N → c, with 0 ≤ c <∞, then

√
T
(
δ̂ − δ

)
→d N (−c∆δ,Σδ) ,

where Σδ = (Φ′0)−1 Σ−1
zz ΩΣ−1

zz Φ−1
0 , and

∆δ ≡
(

∆α

∆β

)
=
(
Φ0ΣzzΦ

′
0

)−1
(

ΣF̃ + V ΣF̃V
−1

ΣWF̃V ΣF̃V
−1

)(
H−1

0

)′
α, with

ΣF̃ ≡ V −1
(
QΓQ′

)
V −1,

ΣWF̃ ≡ p lim

(
W ′F̃

T

)
= ΣWFH

′
0.

If ΣWF = 0, the asymptotic bias is equal to

−c∆δ = −c
( [

ΣF̃ + V ΣF̃V
−1
] (
H−1

0

)′
α

0

)
.

Theorem 2.1 gives the asymptotic distribution of
√
T
(
δ̂ − δ

)
under the condition that

√
T/N → c,

where 0 ≤ c < ∞. When c = 0, we obtain the same limiting distribution as in Bai and Ng (2006)

under a set of assumptions that is weaker than theirs, as we discussed above. As in Bai and Ng (2006),

factors estimation error does not contribute to the asymptotic distribution when c = 0. This is no

longer the case when c > 0. Under this alternative condition, an asymptotic bias appears, as was

recently discussed by Ludvigson and Ng (2011) in the context of a simpler regression model without

observed regressors Wt. Our Theorem 2.1 complements their results by providing an expression for

the bias of δ̂ when the factor-augmented regression model includes also observed regressors in addition

to the unobserved factors Ft.

Several remarks follow. First, the expression for ∆δ is proportional to
(
H−1

0

)′
α = p lim α̂, implying

that when α = 0, no asymptotic bias exists independently of the value of c. Second, the asymptotic

bias for both α̂ and β̂ is a function of

ΣF̃ ≡ V
−1QΓQ′V −1 = lim

N,T→∞

1

T

T∑
t=1

V −1QΓtQ
′V −1,

where V −1QΓtQ
′V −1 is the asymptotic variance of

√
N
(
F̃t −HFt

)
(see Bai (2003)). Thus, the bias

depends on the sampling variance-covariance matrix of the estimation error incurred by the principal

components estimator F̃t, averaged over time. This variance matrix depends on the cross sectional

dependence of {eit} via Γt ≡ V ar
(

1√
N

∑N
i=1 λiei

)
. As we will see next, the main implication for the
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validity of the bootstrap is that it needs to reproduce this cross sectional dependence when c 6= 0

but not otherwise. Third, the existence of measurement error in F̃t contaminates the estimators of

the remaining parameters β, i.e. β̂ is asymptotically biased due to the measurement error in F̃t. The

asymptotic bias associated with β̂ will be zero only in the special case when the observed regressors

and the factors are not correlated (i.e. ΣWF = 0) (or when α = 0).

3 A general residual-based bootstrap

The main contribution of this section is to propose a general residual-based bootstrap method and

discuss its consistency for factor-augmented regression models under a set of suffi cient high-level condi-

tions on the bootstrap residuals. These high level conditions can be verified for any bootstrap scheme

that resamples residuals. We verify these conditions for a two-step wild bootstrap scheme in Section

4.

3.1 Bootstrap data generating process and estimation

Let
{
e∗t = (e∗1t, . . . , e

∗
Nt)
′} denote a bootstrap sample from {

ẽt = Xt − Λ̃F̃t

}
and

{
ε∗t+h

}
a bootstrap

sample from
{
ε̂t+h = yt+h − α̂′F̃t − β̂

′
Wt

}
. We consider the following bootstrap DGP:

y∗t+h = α̂′F̃t + β̂
′
Wt + ε∗t+h, t = 1, . . . , T − h, (7)

X∗t = Λ̃F̃t + e∗t , t = 1, . . . , T. (8)

Estimation proceeds in two stages. First, we estimate the factors by the method of principal

components using the bootstrap panel data set {X∗t }. Second, we run a regression of y∗t+h on the
bootstrap estimated factors and on the fixed observed regressors Wt.

Because the bootstrap scheme used to generate y∗t+h is residual-based, we fix the observed regressors

Wt in the bootstrap regression. We replace F̃t with F̃ ∗t to mimic the fact that in the original regression

model the factors Ft are latent and need to be estimated with F̃t. This yields the bootstrap OLS

estimator

δ̂
∗

=

(
1

T

T−h∑
t=1

ẑ∗t ẑ
∗′
t

)−1
1

T

T−h∑
t=1

ẑ∗t y
∗
t+h. (9)

δ̂
∗
is the bootstrap analogue of δ̂, the OLS estimator based on the original sample.

3.2 Bootstrap high level conditions

In this section, we provide a set of high level conditions on {e∗it} and
{
ε∗t+h

}
that will allow us to

characterize the bootstrap distribution of δ̂
∗
.

A word on notation. As usual in the bootstrap literature, we use P ∗ to denote the bootstrap

probability measure, conditional on the original sample (defined on a given probability space (Ω,F , P )).

Because the sample depends on N and T , as well as on the given sample realization ω, P ∗ is a random
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measure that depends on N,T and ω and we should write P ∗NT,ω. However, for simplicity, we omit the

indices on P ∗. Similarly, we omit the indices NT when referring to the bootstrap samples
{
e∗it, ε

∗
t+h

}
.

For any bootstrap statistic T ∗NT , we write T
∗
NT = oP ∗ (1), in probability, or T ∗NT →P ∗ 0, in probability,

when for any δ > 0, P ∗ (|T ∗NT | > δ) = oP (1). We write T ∗NT = OP ∗ (1), in probability, when for

all δ > 0 there exists Mδ < ∞ such that limN,T→∞ P [P ∗ (|T ∗NT | > Mδ) > δ] = 0. Finally, we write

T ∗NT →d∗ D, in probability, if conditional on a sample with probability that converges to one, T ∗NT
weakly converges to the distribution D under P ∗, i.e. E∗ (f (T ∗NT ))→P E (f (D)) for all bounded and

uniformly continuous functions f .

Condition A∗ (weak time series and cross section dependence in e∗it)

(a) E∗ (e∗it) = 0 for all (i, t) .

(b) 1
T

∑T
t=1

∑T
s=1 |γ∗st|

2 = OP (1), where γ∗st = E∗
(

1
N

∑N
i=1 e

∗
ite
∗
is

)
.

(c) 1
T 2
∑T

t=1

∑T
s=1E

∗
∣∣∣ 1√

N

∑N
i=1 (e∗ite

∗
is − E∗ (e∗ite

∗
is))
∣∣∣2 = OP (1) .

Condition B* (weak dependence among ẑt, λ̃i, and e∗it )

(a) 1
T

∑T
t=1

∑T
s=1 F̃sF̃

′
tγ
∗
st = OP (1) .

(b) 1
T

∑T
t=1E

∗
∥∥∥ 1√

TN

∑T
s=1

∑N
i=1 ẑs (e∗ite

∗
is − E∗ (e∗ite

∗
is))
∥∥∥2

= OP (1), where ẑs =
(
F̃ ′s W ′s

)′
.

(c) E∗
∥∥∥ 1√

TN

∑T
t=1

∑N
i=1 ẑtλ̃

′
ie
∗
it

∥∥∥2
= OP (1) .

(d) 1
T

∑T
t=1E

∗
∥∥∥ 1√

N

∑N
i=1 λ̃ie

∗
it

∥∥∥2
= OP (1) .

(e) 1
T

∑T
t=1

(
Λ̃′e∗t√
N

)(
e∗′t Λ̃√
N

)
− Γ∗ = oP ∗ (1) , in probability, where Γ∗ ≡ 1

T

∑T
t=1 V ar

∗
(

1√
N

Λ̃′e∗t

)
> 0.

Condition C* (weak dependence between e∗it and ε∗t+h)

(a) 1
T

∑T
t=1E

∗
∣∣∣ 1√

TN

∑T−h
s=1

∑N
i=1 ε

∗
s+h (e∗ite

∗
is − E∗ (e∗ite

∗
is))
∣∣∣2 = OP (1).

(b) E∗
∥∥∥ 1√

TN

∑T−h
t=1

∑N
i=1 λ̃ie

∗
itε
∗
t+h

∥∥∥2
= OP (1), where E

(
e∗itε
∗
t+h

)
= 0 for all (i, t).

(c) 1
T

∑T−h
t=1

∑T
s=1 F̃sε

∗
t+hγ

∗
st = OP ∗ (1), in probability.

Condition D* (bootstrap CLT)

(a) E∗
(
ε∗t+h

)
= 0 and 1

T

∑T−h
t=1 E∗

∣∣ε∗t+h∣∣2 = OP (1) .

(b) Ω∗−1/2 1√
T

∑T−h
t=1 ẑtε

∗
t+h →d∗ N (0, Ip), in probability, where E∗

∥∥∥ 1√
T

∑T−h
t=1 ẑtε

∗
t+h

∥∥∥2
= OP (1), and

Ω∗ ≡ V ar∗
(

1√
T

∑T−h
t=1 ẑtε

∗
t+h

)
> 0.
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Conditions A*-D* are the bootstrap analogue of Assumptions 1 through 5. However, contrary

to Assumptions 1-5, which pertain to the data generating process and cannot be verified in practice,

Conditions A*-D* can be verified for any particular bootstrap algorithm used to generate the bootstrap

residuals and idiosyncratic error terms. More importantly, we can devise bootstrap schemes to verify

these conditions and hence ensure bootstrap validity. For instance, part (a) of Condition A* requires

the bootstrap mean of e∗it to be zero for all (i, t) whereas part (a) of Condition D* requires that the same

is true for ε∗t . The practical implication is that we should make sure to construct bootstrap residuals

with mean zero, e.g. to recenter residuals before applying a nonparametric bootstrap method. Parts

b) and c) of Condition A* impose weak dependence conditions on {e∗it} over (i, t). For instance, these

conditions are satisfied if we resample {e∗it} in an i.i.d. fashion over the two indices (i, t). Condition

B* imposes further restrictions on the dependence among ẑt, λ̃i and the idiosyncratic errors e∗it. Since

ẑt and λ̃i are fixed in the bootstrap world, Condition B* is implied by appropriately restricting the

dependence of e∗it over (i, t). Similarly, Condition C* restricts the amount of dependence between

{e∗is} and
{
ε∗t+h

}
. If these two sets of bootstrap innovations are independent of one another, then

weak dependence on {e∗is} suffi ces for Condition C* to hold. Finally, Condition D* requires the

bootstrap regression scores ẑtε∗t+h to obey a central limit theorem in the bootstrap world.

3.3 Bootstrap results

Under Conditions A*-D*, we can show the consistency of the bootstrap principal component estimator

F̃ ∗ for a rotated version of the true “latent”bootstrap factors F̃ , a crucial result in proving the first

order asymptotic validity of the bootstrap in this context.

More specifically, according to (7)-(8), the common factors underlying the bootstrap panel data

{X∗t } are given by F̃t (with Λ̃ as factor loadings). Nevertheless, just as F̃t estimates a rotation of Ft,

the estimated bootstrap factors F̃ ∗t estimate H
∗F̃t, where H∗ is the bootstrap analogue of the rotation

matrix H defined in (4), i.e.

H∗ = Ṽ ∗−1 F̃
∗′F̃

T

Λ̃′Λ̃

N
, (10)

where Ṽ ∗ is the r × r diagonal matrix containing on the main diagonal the r largest eigenvalues of
X∗X∗′/NT , in decreasing order.

Lemma 3.1 Let Assumptions 1-5 hold and suppose we generate bootstrap data
{
y∗t+h, X

∗
t

}
according

to the residual-based bootstrap DGP (7) and (8) by relying on bootstrap residuals
{
ε∗t+h

}
and {e∗t } such

that Conditions A*-D* are satisfied. Then, as N,T →∞,

1

T

T∑
t=1

∥∥∥F̃ ∗t −H∗F̃t∥∥∥2
= OP ∗

(
δ−2
NT

)
,

in probability, where δNT = min
(√

N,
√
T
)
.
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According to Lemma 3.1, the time average of the squared deviations between the estimated boot-

strap factors F̃ ∗t and a rotation of the “latent”bootstrap factors given by H
∗F̃t vanishes in probability

under the bootstrap measure P ∗ as N,T → ∞, conditional on a sample which lies in a set with
probability P converging to one. Contrary to H, H∗ does not depend on population values and can

be computed for any bootstrap sample, given the original sample. Hence, rotation indeterminacy is

not a problem in the bootstrap world. Because the bootstrap factor DGP (8) satisfies the constraints

that F̃ ′F̃ /T = Ir and Λ̃′Λ̃ is a diagonal matrix, we can actually show that H∗ is asymptotically (as

N,T →∞) equal to H∗0 = diag (±1), a diagonal matrix with diagonal elements equal to ±1, where the

sign of is determined by the sign of F̃ ∗′F̃ /T (see Lemma B.1; the proof follows by arguments similar

to those used in Bai and Ng (2011) and Stock and Watson (2002)). Thus, the bootstrap factors are

identified up to a change of sign.

The main implication from Lemma 3.1 is that the bootstrap OLS estimator that one obtains from

regressing y∗t+h on ẑ
∗
t estimates a rotated version of δ̂, given by δ

∗ ≡
(
α̂′H∗−1 β̂

′
)′

= Φ∗′−1δ̂, where

Φ∗ = diag (H∗, Iq) . Asymptotically, δ∗ is equal to Φ∗′−1
0 δ̂, where Φ∗ = diag (H∗0 , Iq), which can be

interpreted as a sign-adjusted version of δ̂.

Our next result characterizes the asymptotic bootstrap distribution of
√
T
(
δ̂
∗ − δ∗

)
when

√
T/N →

c, with 0 ≤ c <∞. We add the two following conditions.

Condition E*. p lim Ω∗ = Φ0ΩΦ′0.

Condition F*. p lim Γ∗ = QΓQ′.

Ω∗ is the bootstrap variance of the scaled average of the bootstrap regression scores ẑtε∗t+h (as

defined in Condition D*(b)). Since F̃t estimates a rotated version of the latent factors given by

H0Ft, ẑt estimates a rotated version of zt given by Φ0zt, and therefore Ω∗ is the sample analog of

Φ0ΩΦ′0 provided we choose ε
∗
t+h to mimic the time series dependence of εt+h. Condition E* imposes

formally this condition. Similarly, by Condition B*(e), Γ∗ ≡ 1
T

∑T
t=1 V ar

∗
(

1√
N

∑N
i=1 λ̃ie

∗
it

)
. Because

λ̃i estimates Qλi, Γ∗ is the sample analogue of QΓQ′ if we choose e∗it to mimic the cross sectional

dependence of eit (interestingly enough, mimicking the time series dependence of eit is not relevant).

Condition F* formalizes this requirement.

Theorem 3.1 Let Assumptions 1-5 hold and consider any residual-based bootstrap scheme for which

Conditions A*-D* are verified. Suppose
√
T/N → c, where 0 ≤ c < ∞. If in addition the two

following conditions hold: (1) Condition E* is verified, and (2) c = 0 or Condition F* is verified; then

as N,T →∞,
√
T
(
δ̂
∗ − δ∗

)
→d∗ N

(
−c
(
Φ∗′0
)−1

∆δ,
(
Φ∗0
′)−1

ΣδΦ
∗−1
0

)
,

in probability, where δ∗ ≡
(
Φ∗−1

0

)′
δ̂,with Φ∗0 = p lim Φ∗ = diag (H∗0 , Iq) a diagonal matrix with ±1 in

the main diagonal, and ∆δ and Σδ are as defined in Theorem 2.1.
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According to Theorem 3.1,
√
T
(
δ̂
∗ − δ∗

)
is asymptotically distributed as a normal random vector

with mean equal to −c (Φ∗′0 )−1 ∆δ. Just as the asymptotic bias of
√
T
(
α̂−

(
H−1

0

)′
α
)
is proportional to(

H−1
0

)′
α, the bootstrap asymptotic bias is proportional to

(
H∗−1

0

)′
α̂. Since α̂ converges in probability

to
(
H−1

0

)′
α, the bootstrap bias of α̂∗ converges to −c (H∗′0 )−1 ∆α provided we ensure that Condition

F* is satisfied. It is interesting that the bootstrap bias of β̂
∗
is unaffected by the rotation problem.

Since the bootstrap analogue of ΣWF̃ is p lim W ′F̃ ∗

T , which converges to ΣWF̃H
∗′
0 , the rotation matrix

H∗′0 “cancels out”with
(
H∗−1

0

)′
α̂ (Lemma B.4 formalizes this argument). Similarly, the asymptotic

variance-covariance matrix of δ̂
∗
is equal to (Φ∗0

′)−1 ΣδΦ
∗−1
0 provided we choose ε∗t+h so as to verify

Condition E*.

For bootstrap consistency, we need the bootstrap bias and variance to match the bias and variance

of the limiting distribution of the original OLS estimator. Since H∗0 (hence Φ∗0) is not necessarily

equal to the identity matrix, Theorem 3.1 shows that this is not the case. Hence, the bootstrap

distribution of
√
T
(
δ̂
∗ − δ∗

)
is not a consistent estimator of the sampling distribution of

√
T
(
δ̂ − δ

)
in general. This is true even if we choose ε∗t+h and e

∗
it such that Conditions E* and F* are satisfied. The

reason is that the bootstrap factors are not identified. In particular, because the bootstrap principal

components estimator does not necessarily identify the sign of the bootstrap factors, the mean of each

element of
√
T
(
δ̂
∗ − δ∗

)
corresponding to the coeffi cients associated with the latent factors may have

the “wrong”sign even asymptotically. The same “sign”problem will affect the off-diagonal elements

of the bootstrap covariance matrix asymptotically (although not the main diagonal elements). As we

mentioned above, the coeffi cients associated with Wt are correctly identified in the bootstrap world as

well as in the original sample and therefore this sign problem does not affect these coeffi cients.

In order to obtain a consistent estimator of the distribution of
√
T
(
δ̂ − δ

)
, our proposal is to

consider the bootstrap distribution of the rotated version of
√
T
(
δ̂
∗ − δ∗

)
given by

√
T
(

Φ∗′δ̂
∗ − δ̂

)
.

This rotation is feasible because Φ∗ does not depend on any population quantities and can be computed

for any bootstrap and original samples. Since Φ∗ is asymptotically equal to Φ∗0 = diag (±1, Iq) =

diag
(
sign

(
F̃ ∗′F̃

)
, Iq

)
, Φ∗′δ̂

∗
is asymptotically equal to a sign-adjusted version of δ̂

∗
. The following

result is an immediate corollary to Theorems 2.1 and 3.1.

Corollary 3.1 Under the conditions of Theorem 3.1, if
√
T/N → c, where 0 ≤ c <∞, as N,T →∞,

then supx∈Rp
∣∣∣P ∗ (√T (Φ∗′δ̂

∗ − δ̂
)
≤ x

)
− P

(√
T
(
δ̂ − δ

)
≤ x

)∣∣∣→P 0.

Corollary 3.1 justifies the use of a residual-based bootstrap method for constructing bootstrap

percentile confidence intervals for the elements of δ. When c = 0, the crucial condition for bootstrap

validity is Condition E*, which requires {ε∗t } to be chosen so as to mimic the dependence structure
of the scores ztεt+h. This condition ensures that the bootstrap variance-covariance matrix of Φ∗′δ̂

∗

is correct asymptotically. When c > 0, Condition F* is also crucial to ensure that the bootstrap

distribution correctly captures the bias. When both Conditions E* and F* are satisfied, the bootstrap

contains a built-in bias correction term that is absent in the Bai and Ng (2006) asymptotic normal
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distribution, and we might expect it to outperform the normal approximation. A bootstrap method

that does not involve factor estimation in the bootstrap world will not contain this bias correction and

will not be valid in this context.

4 Wild bootstrap

In this section we illustrate the use of the high-level conditions above and propose a particular bootstrap

method for generating
{
ε∗t+h

}
and {e∗it} when h = 1.

Bootstrap algorithm

1. For t = 1, . . . , T , let

X∗t = Λ̃F̃t + e∗t ,

where {e∗t = (e∗1t, . . . , e
∗
Nt)} is such that

e∗it = ẽitηit,

is a resampled version of
{
ẽit = Xit − λ̃

′
iF̃t

}
obtained with the wild bootstrap. The external

random variables ηit are i.i.d. across (i, t) and have mean zero and variance one.

2. Estimate the bootstrap factors F̃ ∗ and the bootstrap loadings Λ̃∗ using X∗.

3. For t = 1, . . . , T − 1, let

y∗t+1 = α̂′F̃t + β̂
′
Wt + ε∗t+1,

where the error term ε∗t+1 is a wild bootstrap resampled version of ε̂t+1, i.e.

ε∗t+1 = ε̂t+1vt+1,

where the external random variable vt+1 is i.i.d. (0, 1) and is independent of ηit.

4. Regress y∗t+1 generated in 3. on the estimated bootstrap factors and the fixed regressors ẑ
∗
t =(

F̃ ∗′t ,W
′
t

)′
. This yields the bootstrap OLS estimators

δ̂
∗

=

(
T−1∑
t=1

ẑ∗t ẑ
∗′
t

)−1 T−1∑
t=1

ẑ∗t y
∗
t+1.

To prove the validity of this residual-based wild bootstrap, we add the following assumptions1.

Assumption 6. λi are either deterministic such that ‖λi‖ ≤ M < ∞, or stochastic such that
E ‖λi‖12 ≤ M < ∞ for all i; E ‖Ft‖12 ≤ M < ∞; E |eit|12 ≤ M < ∞, for all (i, t) ; and

for some q > 1, E |εt+1|4q ≤M <∞, for all t.
1Under Assumptions 6-8, some of Assumptions 1-5 simplify. In particular, we can show that Assumption 2(c) and

Assumptions 3(a)-(d) and 4 are implied by Assumptions 1,2, 6-8 if we impose in addition the mutual independence
among {Ft} , {λi} and {eis} and require condition (6).
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Assumption 7. E (εt+1|yt, Ft, yt−1, Ft−1, . . .) = 0, and Ft and εt are independent of the idiosyncratic

errors eis for all (i, s, t).

Assumption 8. E (eitejs) = 0 if i 6= j.

Assumption 6 strengthens the moment conditions assumed in Assumption 1.b), 2.a), and 5.a),

respectively. The moment conditions on λi, Ft and eit suffi ce to show that E
∣∣λ′iFseit∣∣4 < M (while

maintaining that E |eit|8 < M). If we assume that the three groups of random variables {Ft}, {eit}
and {λi} are mutually independent (as in Bai and Ng (2006)), then it suffi ces that E ‖λi‖4 ≤M <∞,
E ‖Ft‖4 ≤M <∞ (and E |eit|8 < M).

Assumption 7 imposes a martingale difference condition on the regression errors εt+1, implying

that these are serially uncorrelated but possibly heteroskedastic. In addition, εt is independent of eis

for all (i, t, s). Under Assumption 7,

Ω = limV ar

(
1√
T

T−1∑
t=1

ztεt+1

)
= lim

1

T

T−1∑
t=1

E
(
ztz
′
tε

2
t+1

)
,

which motivates using a wild bootstrap to generate ε∗t+1. For this bootstrap scheme,

Ω∗ =
1

T

T−1∑
t=1

ẑtẑ
′
tε̂

2
t+1,

is consistent for Φ0ΩΦ′0 under Assumptions 1-7. For h > 1, εt+h will be serially correlated, and some

block bootstrap based method is required in this case. Corradi and Swanson (2011) have established

the validity of the m out of n bootstrap when εt+h is not a martingale difference sequence when

c = 0. We assume independence between eit and εt+1 and generate ε∗t+1 independently of e
∗
it, but we

conjecture that our results will be valid under weak forms of correlation between the two sets of errors

because the limiting distribution of the OLS estimator remains unchanged under Assumptions 1-5,

which allow for dependence between eit and εt+1, as we proved in Theorem 2.1.

Assumption 8 assumes cross section independence in {eit}, but allows for serial correlation and
heteroskedasticity in both directions. This assumption motivates the use of a wild bootstrap to

generate {e∗it}. For this bootstrap scheme, we can show that

Γ∗ =
1

T

T∑
t=1

1

N

N∑
i=1

λ̃iλ̃
′
iẽ

2
it ≡

1

T

T∑
t=1

Γ̃t,

where Γ̃t corresponds to estimator (5a) in Bai and Ng (2006, p. 1140). As shown by Bai and Ng, this

estimator is consistent for QΓQ′ under cross section independence (but potential heteroskedasticity).

Assumption 8 assumes this is the case and thus justifies Condition F* in this context. As we discussed

in the previous section, Condition F* is not needed if c = 0. Thus, a wild bootstrap is still asymp-

totically valid if the idiosyncratic errors are cross sectionally (and serially) dependent when
√
T/N

converges to zero (as assumed in Bai and Ng (2006)).
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Our main result is as follows.

Theorem 4.1 Suppose that a residual-based wild bootstrap is used to generate {e∗it} and
{
ε∗t+1

}
with

E∗ |ηit|4 < C for all (i, t) and E∗ |vt+1|4q < C for all t, for some q > 1. Under Assumptions 1-7, if
√
T/N → c, where 0 ≤ c < ∞, and either Assumption 8 holds or c = 0, the conclusions of Corollary

3.1 follow.

5 Monte Carlo results

In this section, we report results from a simulation experiment that documents the properties of our

bootstrap procedure in factor-augmented regressions.

The data-generating process (DGP) is similar to the one used in Ludvigson and Ng (2011) to

analyze bias. We consider the single factor model:

yt+1 = αFt + εt+1, (11)

where Ft is drawn from a standard normal distribution independently over time. The regression error

εt+1 will either be standard normal or heteroskedastic over time as specified below. The (T ×N)

matrix of panel variables is generated as:

Xit = λiFt + eit, (12)

where λi is drawn from a U [0, 1] distribution (independent across i) and the properties of eit will be

discussed below. The only difference with Ludvigson and Ng (2011) is that they draw the loadings

from a standard normal distribution. The use of a uniform distribution increases the cross-correlations

and leads to larger biases without having to set the idiosyncratic variance to large values (they set

it to 16 in one experiment). Note that this DGP satisfies the conditions PC1 in Bai and Ng (2011)

which implies that H0 = ±1.

We consider six different scenarios outlined in the table below. We consider two values for the

coeffi cient, either α = 0 or 1. When α = 0, the OLS estimator is unbiased, and the properties of the

idiosyncratic components do not matter asymptotically. This leads us to consider only one scenario

with α = 0. The other five scenarios have α = 1 but differ according to the properties of the regression

error, εt, and of the idiosyncratic error, eit.

DGP α εt+1 eit

1 (homo-homo) 0 N (0, 1) N (0, 1)
2 (homo-homo) 1 N (0, 1) N (0, 1)

3 (hetero-homo) 1 N
(

0,
F 2t
3

)
N (0, 1)

4 (hetero-hetero) 1 N
(

0,
F 2t
3

)
N
(
0, σ2

i

)
5 (hetero-AR) 1 N

(
0,

F 2t
3

)
AR+N

(
0, σ2

i

)
6 (hetero-CS) 1 N

(
0,

F 2t
3

)
CS +N (0, 1)
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DGP 1 is the simplest case with α = 0 and both error terms i.i.d. standard normal in both

dimensions. DGP 2 is the same but with α = 1. This allows us to isolate the effect of a non-

zero coeffi cient on bias and inference while keeping everything else the same. The third experiment

introduces conditional heteroskedasticity in the regression error. We do so by making the variance of

εt depend on the factor and scale so that the asymptotic variance of α̂, Σα, is 1 in all experiments.

The fourth DGP adds heteroskedasticity to the idiosyncratic error. The variance of eit is drawn

from U [.5, 1.5] so that the average variance is the same as the homoskedastic case. The fifth DGP

introduces serial correlation in the idiosyncratic error term with autoregressive parameter equal to 0.5.

The innovations are scaled by
(
1− .52

)1/2 to preserve the variance of the idiosyncratic errors. Finally,
the last experiment introduces cross-sectional dependence among idiosyncratic errors. The design is

similar to the one in Bai and Ng (2006): the correlation between eit and ejt is 0.5|i−j| if |i− j| ≤ 5.

We rescale eit so that Γ is the same as for the other cases.

We concentrate on inference about the parameter α in (11) .We consider asymptotic and bootstrap

symmetric percentile t confidence intervals at a nominal level of 95%. We report experiments based

on 5000 replications with B = 399 bootstrap repetitions. We consider three values for N (50, 100,

and 200) and T (50, 100, and 200).

We tailor our inference procedures to the properties of the error terms. When εt is homoskedastic

(DGP 1 and 2), we use the variance estimator under homoskedasticity:

Σ̂α = σ̂2
ε

(
1

T

T−1∑
t=1

F̃ 2
t

)−1

(13)

whereas we use the heteroskedastic-robust version for DGPs 3-6:

Σ̂α =

(
1

T

T−1∑
t=1

F̃ 2
t

)−1(
1

T

T−1∑
t=1

F̃ 2
t ε̂

2
t+1

)(
1

T

T−1∑
t=1

F̃ 2
t

)−1

. (14)

Similarly, we use the homoskedastic estimator of Γ for cases 1-3, the heteroskedasticity-robust

estimator for cases 4-5, and the CS-HAC estimator of Bai and Ng (2006) in case 6 with the window

size n equal to min
(√

N,
√
T
)
. We consider the wild residual-based bootstrap described in Section 4

with the two external variables ηit and vt both drawn from i.i.d. N (0, 1) .

We report two sets of results. The first set of results is the bias of the OLS estimator. Because

the OLS estimator does not converge to α but to H−1′α (and H converges to +1 or −1) and because

its bias is proportional to this, the bias will be positive for some replications and negative for others.

Reporting the average bias over replications is therefore misleading in this situation. To circumvent

this, we report the bias of the rotated OLS coeffi cient, H ′α̂. This rotated coeffi cient converges to α in

all replications. Note that this rotation is not possible in the real world since the matrix H depends

on population parameters. Note also that this rotation is possible in the bootstrap world (and indeed

necessary to obtain consistent inference of the entire coeffi cient vector, see Corollary 3.1). For the

bootstrap world, we report the average of H ′H∗′α̂∗ −H ′α̂, again to ensure that the sign of this bias

16



is always the same. Secondly, we present coverage rates of the associated confidence intervals. For

comparison, we also include results for the case where factors do not need to be estimated and are

treated as observed (row labeled "true factor" in the tables). This quantifies the loss from having to

estimate the factors.

Table 1 provides results for the first two DGPs and illustrates our results. For each DGP, the

top panel gives the bias associated with the OLS estimator as well as the plug-in and bootstrap

estimates. The plug-in estimate is obtained by replacing the unknown quantities in Theorem 2.1 by

sample analogues. The second panel for each design provides the coverage rate of intervals based on

asymptotic theory, either using the OLS estimator or its plug-in bias-corrected version, based on OLS

using true factors, and based on the wild bootstrap. From table 1, we see that, as expected, bias is

nil when α = 0 (case 1). When α 6= 0, a negative bias appears. DGP 2 shows that the magnitude

of this bias is decreasing in N (and T ). The plug-in estimate of this quantity provides a reasonable

approximation to it. However, the bootstrap captures the behavior of the bias well as predicted by

theory and better than the plug-in estimate.

Coverage rates are consistent with these findings. When α = 0 (DGP 1), asymptotic theory is

nearly perfect and matches closely the results based on the observed factors. In case 2, with α = 1,

OLS inference suffers from noticeable distortions for all sample sizes. This is because the estimator is

biased and the associated t-statistic is not centered at 0. Plug-in bias correction corrects most of these

distortions. The bootstrap provides even better inference and is quite accurate for N ≥ 100. The loss

in accuracy in inference is due to the estimation of the factors as illustrated by the results with the

true factors.

Tables 2 and 3 provide results for the other DGPs and show the robustness of the results to the

presence of heteroskedasticity in both errors (DGPs 3 and 4), and serial correlation in the idiosyncratic

errors (DGP 5). The bias results in table 2 are very similar to those in table 1, although coverage

rates reported in table 3 deteriorate relative to the simpler homoskedastic case. The presence of cross-

sectional dependence (DGP 6) is interesting. The wild bootstrap is theoretically not valid since it

does not replicate the cross-sectional dependence. Indeed, we see that, contrary to the other cases,

the plug-in estimate of the bias is often better than the bootstrap, especially with N = 50.

6 Conclusion

The main contribution of this paper is to give a set of suffi cient high-level conditions under which

any residual-based bootstrap method is valid in the context of the factor-augmented regression model

in cases where
√
T/N → c, 0 ≤ c < ∞. Our results show that two crucial conditions for bootstrap

validity in this context are that the bootstrap regression scores replicate the time series dependence

of the true regression scores, and that either c = 0 or the bootstrap replicates also the cross-sectional

dependence of the idiosyncratic error terms.
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Our high-level conditions can be checked for any implementation of the bootstrap in this context.

We verify them for a particular scheme based on a two-step application of the wild bootstrap. Al-

though the wild bootstrap preserves heteroskedasticity, its validity depends on a martingale difference

condition on the regression errors and on cross-sectional independence of the idiosyncratic errors when

c 6= 0.

Although our general results in Sections 2 and 3 allow for serial correlation in the scores (see in

particular our Assumption 5(b)), the particular implementation of the two-step residual-based wild

bootstrap we consider in Section 4 is not robust to serial dependence. A block bootstrap based method

is required in this case. We plan on investigating the validity of such a method in future work, and

our high-level conditions will be useful in establishing this result.

A second important extension of the results in this paper is to propose a bootstrap scheme that

is able to replicate the cross-sectional dependence of the idiosyncratic error term. As our results

show, this is crucial for capturing the bias when c 6= 0. Our wild bootstrap based method does not

allow for cross-sectional dependence. Because there is no natural cross-sectional ordering, devising a

nonparametric bootstrap method that is robust to cross-sectional dependence of unknown form is a

challenging task.

Another important extension of the results in this paper is the construction of interval forecasts,

which we are currently investigating.
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A Appendix A: Proofs of results in Section 2

We rely on the following lemmas to prove Theorem 2.1.

Lemma A.1 Let Assumptions 1-5 hold. Then, 1
T

∑T−h
t=1

(
F̃t −HFt

)
εt+h = OP

(
1

δNT
√
T

)
, where

δNT = min
(√

N,
√
T
)
.

Lemma A.2 Let Assumptions 1-5 hold. Then, if
√
T/N → c, where 0 ≤ c <∞, for any fixed h ≥ 0,

a) 1√
T

∑T−h
t=1

(
F̃t −HFt

)(
F̃t −HFt

)′
= cV −1QΓQ′V −1 + oP (1) .

b) 1√
T

∑T−h
t=1 HFt

(
F̃t −HFt

)′
= cQΓQ′V −2 + oP (1) .

c) 1√
T

∑T−h
t=1 Wt

(
F̃t −HFt

)′
= cΣWFH

′
0QΓQ′V −2 + oP (1) .

d) Letting ΣF̃ ≡ V −1QΓQ′V −1, we have that

1√
T

T−h∑
t=1

F̃t

(
F̃t −HFt

)′ (
H−1

)′
α = c

(
ΣF̃ + V ΣF̃V

−1
)
p lim (α̂)︸ ︷︷ ︸

≡Bα

+ oP (1) , (15)

and

1√
T

T−h∑
t=1

Wt

(
F̃t −HFt

)′ (
H−1

)′
α = c

(
ΣWF̃V ΣF̃V

−1
)
p lim (α̂)︸ ︷︷ ︸

≡Bβ

+ oP (1) , (16)

where ΣWF̃ = p lim
(
W ′F̃
T

)
= ΣWFH

′
0, with ΣWF ≡ E (WtF

′
t).

Proof of Theorem 2.1. Write

√
T
(
δ̂ − δ

)
=

(
1

T

T−h∑
t=1

ẑtẑ
′
t

)−1



1√
T

T−h∑
t=1

(
HFt
Wt

)
εt+h︸ ︷︷ ︸

≡A

+
1√
T

T−h∑
t=1

(
F̃t −HFt

0

)
εt+h︸ ︷︷ ︸

≡B

− 1√
T

T−h∑
t=1

ẑt

(
F̃t −HFt

)′ (
H−1

)′
α︸ ︷︷ ︸

≡C


. (17)

By Assumption 5 and given the definition of Φ0 = diag (p limH, Iq),

A =

(
H 0
0 Iq

)
1√
T

T−h∑
t=1

ztεt+h →d N
(
0,Φ0ΩΦ′0

)
.

By Lemma A.1, B →P 0 and by Lemma A.2d),

C = − 1√
T

T−h∑
t=1

(
F̃t
Wt

)(
F̃t −HFt

)′ (
H−1

)′
α = −c

(
Bα
Bβ

)
+ oP (1) ,
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where Bα and Bβ are as defined in (15) and (16). Given Assumptions 1-5,

1

T

T−h∑
t=1

ẑtẑ
′
t = Φ0

(
1

T

T−h∑
t=1

ztz
′
t

)
Φ′0 + oP (1) = Φ0ΣzzΦ

′
0 + oP (1) .

This implies that if
√
T/N → c,

√
T
(
δ̂ − δ

)
→d N (−c∆δ,Σδ) , with Σδ = Φ′−1

0 Σ−1
zz ΩΣ−1

zz Φ−1
0 , and

∆δ ≡
(

∆α

∆β

)
=
(
Φ0ΣzzΦ

′
0

)−1
(

ΣF̃ + V ΣF̃V
−1

ΣWF̃V ΣF̃V
−1

)
p lim (α̂) .

When ΣWF ≡ E (WtF
′
t) = 0, we have that ΣWF̃ = 0, implying that

∆δ =

(
H ′−1

0 Σ−1
F H−1

0 0

0 Σ−1
W

)(
ΣF̃ + V ΣF̃V

−1

0× V ΣF̃V
−1

)
p lim (α̂) =

(
ΣF̃ + V ΣF̃V

−1

0

)
p lim (α̂) ,

since H ′−1
0 Σ−1

F H−1
0 = Ir given that we can show that H0ΣF = Q = (H ′0)−1 .

Proof of Lemma A.1. The proof is based on the following identity:

F̃t −HFt = Ṽ −1

(
1

T

T∑
s=1

F̃sγst +
1

T

T∑
s=1

F̃sζst +
1

T

T∑
s=1

F̃sηst +
1

T

T∑
s=1

F̃sξst

)
≡ Ṽ −1 (A1t +A2t +A3t +A4t) , (18)

where γst = E
(

1
N

∑N
i=1 eiseit

)
, ζst = 1

N

∑N
i=1 (eiseit − E (eiseit)) , ηst = 1

N

∑N
i=1 λ

′
iFseit = F ′s

Λ′et
N and

ξst = F ′t
Λ′es
N = ηts. Using the identity (18), we have that

1

T

T−h∑
t=1

(
F̃t −HFt

)
εt+h = Ṽ −1 (I + II + III + IV ) ,

where I = T−2
∑T−h

t=1

∑T
s=1 F̃sγstεt+h, and

II = T−2
T−h∑
t=1

T∑
s=1

F̃sζstεt+h, III = T−2
T−h∑
t=1

T∑
s=1

F̃sηstεt+h; and IV = T−2
T−h∑
t=1

T∑
s=1

F̃sξstεt+h.

Since Ṽ −1 = OP (1) (see Lemma A.3 of Bai (2003), which shows that Ṽ →P V > 0), we can ignore

Ṽ −1. I = OP
(
T−1/2δ−1

NT

)
by the same argument as given in the proof of Lemma A1 of Bai and Ng

(2006) (this uses the fact that 1
T

∑T
s=1

∥∥∥F̃s −HFs∥∥∥2
= OP

(
δ−2
NT

)
under our assumptions; see Lemma

A.1 of Bai (2003)). For II, we have

‖II‖ ≤
(

1

T

T∑
s=1

∥∥∥F̃s∥∥∥2
)1/2

 1

T

T∑
s=1

∣∣∣∣∣ 1

T

T−h∑
t=1

ζstεt+h

∣∣∣∣∣
2
1/2

= OP

(
1√
NT

)
= OP

(
1√
TδNT

)
,

given that 1
T

∑T
s=1

∥∥∥F̃s∥∥∥2
≤ 2

T

∑T
s=1

∥∥∥F̃s −HFs∥∥∥2
+ 2

T ‖H‖
2∑T

s=1 ‖Fs‖
2 = OP (1) , and

1

T

T∑
s=1

E

∣∣∣∣∣ 1

T

T−h∑
t=1

ζstεt+h

∣∣∣∣∣
2

=
1

TN

1

T

T∑
s=1

E

∣∣∣∣∣ 1√
TN

T−h∑
t=1

N∑
i=1

(eiseit − E (eiseit)) εt+h

∣∣∣∣∣
2

= O

(
1

TN

)
,
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by Assumption 4(a). For III, a similar argument yields

III ≤
(

1

T

T∑
s=1

∥∥∥F̃s∥∥∥2
)1/2

 1

T

T∑
s=1

∣∣∣∣∣ 1

T

T−h∑
t=1

ηstεt+h

∣∣∣∣∣
2
1/2

= OP

(
1√
NT

)
,

since

1

T

T∑
s=1

(
1

T

T−h∑
t=1

ηstεt+h

)2

≤ 1

T

T∑
s=1

‖Fs‖2︸ ︷︷ ︸
=OP (1)

· 1

TN

∥∥∥∥∥ 1√
TN

T−h∑
t=1

Λ′etεt+h

∥∥∥∥∥
2

︸ ︷︷ ︸
=OP (1) by Assumption 4(b)

= OP

(
1

TN

)
.

Finally, for IV, we have that

‖IV ‖ ≤
(

1

T

T∑
s=1

∥∥∥F̃s∥∥∥2
)1/2

 1

T

T∑
s=1

(
1

T

T−h∑
t=1

ξstεt+h

)2
1/2

= OP

(
1√
NT

)
,

since

1

T

T∑
s=1

(
1

T

T−h∑
t=1

ξstεt+h

)2

≤ 1

TN

(
1

T

T∑
s=1

∥∥∥∥ e′sΛ√N
∥∥∥∥2
)

︸ ︷︷ ︸
=OP (1) by Assumption 3(d)

∥∥∥∥∥ 1√
T

T−h∑
t=1

Ftεt+h

∥∥∥∥∥
2


︸ ︷︷ ︸
= OP

(
1

TN

)
.

=OP (1) by Assumption 5(c)

Proof of Lemma A.2. Proof of part a) Using the identity (18), we can write

1√
T

T−h∑
t=1

(
F̃t −HFt

)(
F̃t −HFt

)′
= Ṽ −1 1√

T

T−h∑
t=1

(A1t +A2t +A3t +A4t) (A1t +A2t +A3t +A4t)
′ Ṽ −1,

where Ait (i = 1, . . . , 4) are defined in (18). We analyze each term separately (ignoring Ṽ −1). We

can show that 1
T

∑T−h
t=1 A1tA

′
1t = OP

(
T−1

)
, implying that 1√

T

∑T−h
t=1 A1tA

′
1t = OP

(
T−1/2

)
= oP (1) .

Indeed, by Cauchy-Schwartz∥∥∥∥∥ 1

T

T−h∑
t=1

A1tA
′
1t

∥∥∥∥∥ ≤ 1

T

T−h∑
t=1

‖A1t‖2 ≤
1

T

(
1

T

T∑
s=1

∥∥∥F̃s∥∥∥2
)(

1

T

T∑
t=1

T∑
s=1

γ2
st

)
= OP

(
1

T

)
.

We can show that 1
T

∑T−h
t=1 A2tA

′
2t = OP

(
(NT )−1

)
+OP

(
N−1δ−2

NT

)
, implying that 1√

T

∑T−h
t=1 A2tA

′
2t =

OP

(
1√
TN

)
+OP

(√
T
N δ−2

NT

)
= oP (1) , if

√
T/N → c <∞. Indeed,∥∥∥∥∥ 1

T

T−h∑
t=1

A2tA
′
2t

∥∥∥∥∥ ≤ 1

T

T−h∑
t=1

‖A2t‖2 =
1

T

T−h∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

(
F̃s −HFs +HFs

)
ζst

∥∥∥∥∥
2

≤ 1

T

T−h∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

(
F̃s −HFs

)
ζst

∥∥∥∥∥
2

+
1

T

T−h∑
t=1

∥∥∥∥∥H 1

T

T∑
s=1

Fsζst

∥∥∥∥∥
2

≡ a22.1 + a22.2,
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where

a22.1 ≡
1

T

T−h∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

(
F̃s −HFs

)
ζst

∥∥∥∥∥
2

≤
(

1

T

T∑
s=1

∥∥∥F̃s −HFs∥∥∥2
)

︸ ︷︷ ︸
=OP (δ−2NT )

(
1

T 2

T∑
t=1

T∑
s=1

|ζst|2
)

︸ ︷︷ ︸
=OP (N−1) by Assumption 2(c)

= OP

(
1

Nδ2
NT

)
,

and

a22.2 ≤ ‖H‖2
1

T

T−h∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

Fsζst

∥∥∥∥∥
2

= ‖H‖2 1

TN

1

T

T−h∑
t=1

∥∥∥∥∥ 1√
TN

T∑
s=1

N∑
i=1

Fs (eiseit − E (eiseit))

∥∥∥∥∥
2

︸ ︷︷ ︸
=OP (1) by Assumption 3(b)

= OP

(
1

TN

)
.

We can show that if
√
T/N → c, 1√

T

∑T−h
t=1 A3tA

′
3t = cQΓQ′ + oP (1) . Indeed,

1

T

T−h∑
t=1

A3tA
′
3t =

1

T

T−h∑
t=1

(
1

T

T∑
s=1

(
F̃s −HFs +HFs

)
ηst

)(
1

T

T∑
s=1

(
F̃s −HFs +HFs

)
ηst

)′
≡ a33.1 + a33.2 + a′33.2 + a33.3,

where ‖a33.1‖ ≤ 1
T

∑T
s=1

∥∥∥F̃s −HFs∥∥∥2
1
T 2
∑T−h

t=1

∑T
s=1 |ηst|

2 = OP

(
1

Nδ2NT

)
under our assumptions (in

particular, Assumption 3(d) is useful here). Thus,
√
Ta33.1 = OP

(√
T
N

1
δ2NT

)
= oP (1) , if

√
T/N → c.

Using similar arguments, we can show that
√
Ta33.2 = OP

(√
T
N

1
δNT

)
= oP (1). For a33.3, write

a33.3 =
1

T

T−h∑
t=1

(
1

T

T∑
s=1

HFsηst

)(
1

T

T∑
s=1

HFsηst

)′
= H

1

T

T−h∑
t=1

(
1

T

T∑
s=1

FsF
′
s

Λ′et
N

)(
1

T

T∑
s=1

e′tΛ

N
FsF

′
s

)
H ′

= H

(
F ′F

T

)
1

T

T−h∑
t=1

(
Λ′et
N

)(
e′tΛ

N

)(
F ′F

T

)
H ′ = OP

(
1

N

)
,

given Assumption 3(e). When multiplied by
√
T , this term is of order OP

(√
T
N

)
and therefore it will

not converge to zero in probability when c 6= 0. To compute its probability limit, note that

HF ′F

T
=

(
FH ′ − F̃ + F̃

)′
F

T
= −

(
F̃ − FH ′

)′
F

T
+
F̃ ′F

T
= −Q+ oP (1)

since (F̃−FH′)
′
F

T = OP
(
δ−2
NT

)
= oP (1) (see Lemma B.2 of Bai (2003)) and p lim F̃ ′F

T = Q. Thus,

√
Ta33.3 =

√
T

N
H

(
F ′F

T

){
1

T

T−h∑
t=1

(
Λ′et√
N

)(
e′tΛ√
N

)}(
F ′F

T

)
H ′ = cQΓQ′ + oP (1) ,

where we have used Assumption 3(e) and the fact that
√
T/N = c + o (1). To complete the proof,

we show that the remaining terms are asymptotically negligible. We can show that 1
T

∑T−h
t=1 A4tA

′
4t =

OP

(
1

Nδ2NT

)
+OP

(
1

NδNT

)
+OP

(
1
TN

)
, which implies that if

√
T/N → c, 1√

T

∑T−h
t=1 A4tA

′
4t = OP

( √
T

Nδ2NT

)
+
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OP
( √

T
NδNT

)
+OP

(
1√
TN

)
= oP (1) . Indeed, given the definition of A4t,

1

T

T−h∑
t=1

A4tA
′
4t =

1

T

T−h∑
t=1

(
1

T

T∑
s=1

(
F̃s −HFs +HFs

)
ξst

)(
1

T

T∑
s=1

(
F̃s −HFs +HFs

)
ξst

)′
≡ a44.1 + a44.2 + a′44.2 + a44.3,

where by Cauchy-Schwartz and Assumption 3(d),

‖a44.1‖ ≤
1

T

T−h∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

(
F̃s −HFs

)
ξst

∥∥∥∥∥
2

≤ 1

T

T∑
s=1

∥∥∥F̃s −HFs∥∥∥2 1

T 2

T−h∑
t=1

T∑
s=1

|ξst|2 = OP
(
δ−2
NT

)
OP
(
N−1

)
,

and

‖a44.2‖ ≤

 1

T

T−h∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

HFsξst

∥∥∥∥∥
2
1/2 1

T

T−h∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

(
F̃s −HFs

)
ξst

∥∥∥∥∥
2
1/2

= OP

(
N−1/2

)
OP

(
N−1/2δ−1

NT

)
.

Thus,
√
Ta44.1 = OP

(
δ−2
NT

)
OP

(√
TN−1

)
= oP (1) and

√
Ta44.2 = OP

(√
TN−1

)
OP
(
δ−1
NT

)
= oP (1)

if
√
T/N → c. Finally, for a44.3, by Assumption 3(c),

a44.3 = H
1

T

T−h∑
t=1

(
1

T

T∑
s=1

Fsξst

)(
1

T

T∑
s=1

ξstF
′
s

)
H ′

= H

(
1

T

T∑
s=1

Fs
e′sΛ

N

)
1

T

T−h∑
t=1

FtF
′
t

(
1

T

T∑
s=1

Λ′es
N

F ′s

)
H ′ = OP

(
(NT )−1/2

)
OP (1)OP

(
(NT )−1/2

)
,

implying that
√
Ta44.3 = oP (1) . We now deal with the cross terms. From Cauchy-Schwartz and

the fact that T−1
∑T−h

t=1 ‖A1t‖2 = OP
(
T−1

)
and T−1

∑T−h
t=1 ‖A2t‖2 = OP

(
N−1δ−2

NT

)
, it follows that

T−1
∑T−h

t=1 A1tA
′
2t = OP

(
δ−1
NT (TN)−1/2

)
, which implies that T−1/2

∑T−h
t=1 A1tA

′
2t = oP (1) . Simi-

larly, we can show that T−1
∑T−h

t=1 A1tA
′
3t = OP

(
(TN)−1/2

)
since T−1

∑T−h
t=1 ‖A3t‖2 = OP

(
N−1

)
;

T−1
∑T−h

t=1 A1tA
′
4t = OP

(
(TN)−1/2

)
, given that T−1

∑T−h
t=1 ‖A4t‖2 = OP

(
N−1

)
; T−1

∑T−h
t=1 A2tA

′
3t =

OP
(
N−1δ−1

NT

)
; T−1

∑T−h
t=1 A2tA

′
4t = OP

(
N−1δ−1

NT

)
; and T−1

∑T−h
t=1 A3tA

′
4t = OP

(
N−1δ−1

NT

)
. For this

last term, an application of Cauchy-Schwartz inequality is not enough since it would imply that this

term is of order OP
(
N−1

)
, which when multiplied by

√
T would not go to zero if lim

√
T/N = c 6= 0.

Therefore, a different argument is required. In particular, we write

1

T

T−h∑
t=1

A3tA
′
4t =

1

T

T−h∑
t=1

A3t

(
1

T

T∑
s=1

F̃sξst

)′
=

1

T

T−h∑
t=1

A3t

(
1

T

T∑
s=1

(
F̃s −HFs

)
ξst +H

1

T

T∑
s=1

Fsξst

)′

=
1

T

T−h∑
t=1

A3t
1

T

T∑
s=1

(
F̃s −HFs

)′
ξst +H

1

T 2

T−h∑
t=1

A3t

(
T∑
s=1

Fsξst

)′
.
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The first term is of order OP
(
N−1δ−1

NT

)
by Cauchy-Schwartz inequality. For the second term, we

decompose A3t as follows,

A3t =
1

T

T∑
s=1

F̃sηst =
1

T

T∑
s=1

(
F̃s −HFs

)
ηst +H

1

T

T∑
s=1

Fsηst.

Thus, we get that

1

T 2

T−h∑
t=1

A3t

T∑
s=1

Fsξst =
1

T

T−h∑
t=1

(
1

T

T∑
s=1

(
F̃s −HFs

)
ηst

)(
1

T

T∑
s=1

Fsξst

)′
+H

1

T

T−h∑
t=1

(
1

T

T∑
s=1

Fsηst

)(
1

T

T∑
s=1

Fsξst

)′
.

The first term is of order OP
(
N−1δ−1

NT

)
using Cauchy-Schwartz and the bounds found before. For the

second term, we use the definitions of ηst and ξst to write

1

T

T−h∑
t=1

(
1

T

T∑
s=1

Fsηst

)(
1

T

T∑
s=1

Fsξst

)′
=

1

NT

(
F ′F

T

)(
1√
TN

T−h∑
t=1

Λ′etF
′
t

)(
1√
TN

T−h∑
s=1

Λ′esF
′
s

)

=
1

NT
OP (1)OP (1)OP (1) = OP

(
1

TN

)
,

given Assumption 3(c). This completes the proof of part a) since it shows that all the terms except

the term that depends on 1
T

∑T−h
t=1 A3tA

′
3t are asymptotically negligible when

√
T/N → c.

Proof of part b). Replacing F̃t −HFt = Ṽ −1 (A1t +A2t +A3t +A4t) yields

H
1√
T

T−h∑
t=1

Ft

(
F̃t −HFt

)′
= H

1√
T

T−h∑
t=1

Ft (A1t +A2t +A3t +A4t)
′ Ṽ −1 ≡

√
TH (bf1 + bf2 + bf3 + bf4) Ṽ −1,

where Ait are as defined previously. Again, we consider each term separately. We can show that

T−1
∑T−h

t=1 FtA
′
1t = OP

(
δ−1
NTT

−1/2
)
, which implies that

√
THbf1Ṽ

−1 = oP (1) under our assumptions.

Indeed, using the decomposition of A1t,

bf1 ≡ 1

T

T−h∑
t=1

FtA
′
1t =

1

T

T−h∑
t=1

Ft

(
1

T

T∑
s=1

(
F̃s −HFs

)′
γst

)
+

1

T

T−h∑
t=1

Ft

(
1

T

T∑
s=1

F ′sγst

)
H ′

≡ bf1.1 + bf1.2,

where ‖bf1.1‖ ≤ OP (1)OP
(
δ−1
NTT

−1/2
)
by an application of Cauchy-Schwartz inequality and the fact

that T−1
∑T−h

t=1 ‖Ft‖
2 = OP (1) and T−1

∑T−h
t=1

∥∥∥∥ 1
T

∑T
s=1

(
F̃s −HFs

)′
γst

∥∥∥∥2

= OP
(
δ−2
NTT

−1
)
. For

bf1.2, we have

bf1.2 ≡
1

T

T−h∑
t=1

Ft

(
1

T

T∑
s=1

F ′sγst

)
H ′ =

1

T

(
1

T

T−h∑
t=1

T∑
s=1

FtF
′
sγst

)
H ′ = OP

(
T−1

)
,

since

E

∥∥∥∥∥ 1

T

T−h∑
t=1

T∑
s=1

FtF
′
sγst

∥∥∥∥∥ ≤ 1

T

T∑
t=1

T∑
s=1

E
∥∥FtF ′sγst∥∥ ≤ 1

T

T∑
t=1

T∑
s=1

|γst|
(
E ‖Ft‖2

)1/2 (
E ‖Fs‖2

)1/2
= O (1) ,
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given Assumptions 1 and 2. Thus, bf1 = OP
(
δ−1
NTT

−1/2
)
. Similarly, we can show that bf2 ≡

T−1
∑T−h

t=1 FtA
′
2t = OP

(
(TN)−1/2

)
since by definition of A2t,

‖bf2‖ =

∥∥∥∥∥ 1

T 2

T−h∑
t=1

T∑
s=1

FtζstF̃
′
s

∥∥∥∥∥ ≤
(

1

T

T∑
s=1

∥∥∥F̃s∥∥∥2
)1/2

 1

T

T∑
s=1

∥∥∥∥∥ 1

T

T−h∑
t=1

Ftζst

∥∥∥∥∥
2
1/2

= OP (1)OP

(
1√
TN

)
,

where Assumption 3(b) is used to bound the second term. The same exact reasoning applies to show

that bf3 ≡ T−1
∑T−h

t=1 FtA
′
3t = OP

(
(TN)−1/2

)
, with the difference that we use Assumption 3(c)

to conclude that T−1
∑T

s=1

∥∥∥T−1
∑T−h

t=1 Ftηst

∥∥∥2
= OP

(
(TN)−1/2

)
. To end the proof, we show that

√
Tbf4 = cΣFΓQ′V −1 + oP (1) . Replacing A4t with its definition (and decomposing it into two terms)

yields

bf4 ≡
1

T

T−h∑
t=1

FtA
′
4t =

1

T

T−h∑
t=1

Ft

(
1

T

T∑
s=1

(
F̃s −HFs

)′
ξst

)
+

1

T

T−h∑
t=1

Ft

(
1

T

T∑
s=1

(HFs)
′ ξst

)
≡ bf4.1+bf4.2.

Starting with bf4.2, and given that ξst = F ′t
Λ′es
N , we have that

bf4.2 =
1√
TN

(
1

T

T−h∑
t=1

FtF
′
t

)(
1√
TN

T∑
s=1

Λ′esF
′
s

)
H ′ = O

(
1√
TN

)
,

given Assumptions 1, 3(c) and the fact that H = OP (1) . Thus,
√
Tb4f.2 = oP (1). Next, consider

bf4.1. We have that

bf4.1 =
1

T

T−h∑
t=1

Ft
1

T

T∑
s=1

(
F̃s −HFs

)′(
F ′t

Λ′es
N

)
=

(
1

T

T−h∑
t=1

FtF
′
t

)(
1

T

T∑
s=1

Λ′es
N

(
F̃s −HFs

)′)
,

where the first term is OP (1) and the second term can be shown to be OP
(
N−1

)
. Thus, we will

get a non negligible contribution from bf4.1 when multiplying by
√
T . Specifically, using the usual

decomposition for F̃s −HFs, we have that

1

T

T∑
s=1

Λ′es
N

(
F̃s −HFs

)′
=

1

T

T∑
s=1

Λ′es
N

(A1s +A2s +A3s +A4s)
′ Ṽ −1. (19)

We will show that the only non-negligible term is the term involvingA3s. The first term isOP
(

(NT )−1/2
)

by an application of the Cauchy-Schwartz inequality, given Assumption 3(d) and the fact that T−1
∑T

s=1 ‖A1s‖2 =

OP
(
T−1

)
; so this term is oP (1) when multiplied by

√
T . Similarly, the second term is OP

(
N−1δ−1

NT

)
,

given Assumption 3(d) and the fact that T−1
∑T

s=1 ‖A2s‖2 = OP
(
N−1δ−2

NT

)
. For the last term in (19),

a more careful analysis is required. We have that

1

T

T∑
s=1

Λ′es
N

A′4s =
1

T

T∑
s=1

Λ′es
N

1

T

T∑
t=1

(
F̃t −HFt

)′
ξts +H

1

T

T∑
s=1

Λ′es
N

1

T

T∑
t=1

F ′tξts. (20)
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By Cauchy-Schwartz inequality, we can bound the first term in (20) by(
1

T

T∑
t=1

∥∥∥F̃t −HFt∥∥∥2
)1/2

 1

T

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

Λ′es
N

ξts

∥∥∥∥∥
2
1/2

= OP

(
1

δNT

)
OP

(
1

N

)
= OP

(
1

NδNT

)
,

since ξst = ηst, implying that

1

T

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

Λ′es
N

ξts

∥∥∥∥∥
2

=
1

T

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

Λ′es
N

ηst

∥∥∥∥∥
2

≤ 1

T

T∑
s=1

∥∥∥∥Λ′es
N

∥∥∥∥2 1

T 2

T∑
t=1

T∑
s=1

|ηst|2 = OP

(
1

N2

)
.

The second term in (20) can be shown to be OP
(

(TN)−1
)
given Assumption 3(c). Thus, (20)

is OP
(
N−1δ−1

NT

)
, which is oP (1) when multiplied by

√
T . To complete the proof, we analyze the

dominant term in bf4.1 which comes from the contribution involving A3s. Using the definition of A3s,

it follows that

1

T

T∑
s=1

Λ′es
N

A′3sṼ
−1 =

1

N

1

T

T∑
s=1

(
Λ′es√
N

)(
e′sΛ√
N

)
F ′F̃

T
Ṽ −1 =

1

N
(Γ + oP (1))Q′V −1,

given Assumption 3(e) and the fact that F ′F̃
T = Q′ + oP (1) and Ṽ →P V . Thus,

√
Tbf4.1 =

(
1

T

T−h∑
t=1

FtF
′
t

)(√
T

N
(Γ + oP (1))Q′V −1

)
= cΣFΓQ′V −1 + oP (1) .

This implies that
√
THbf4.1Ṽ

−1 = cH0ΣFΓQ′V −1V −1 + oP (1) = cQΓQ′V −2 + oP (1) , because H0 =

p limH is such that H0ΣF = Q.

Proof of part c). The proof follows closely the proof of part b) by relying on moment and dependence

conditions involving the extra regressors Wt. In particular, writing

1√
T

T−h∑
t=1

Wt

(
F̃t −HFt

)′
=

1√
T

T−h∑
t=1

Wt (A1t +A2t +A3t +A4t)
′ Ṽ −1 ≡

√
T (d1 + d2 + d3 + d4) Ṽ −1,

we verify that
√
Tdi = oP (1) for i = 1, 2, 3 by using the same arguments as for bf1, bf2 and bf3. The

only term that has a nonzero contribution is d4. Following the same arguments as for bf4,

√
Td4Ṽ

−1 =
√
T

(
1

T

T−h∑
t=1

WtF
′
t

)(
1

T

T∑
s=1

Λ′es
N

(
F̃s −HFs

)′)
Ṽ −1 = cΣWFΓQ′V −2 + oP (1)

= cΣWFH
′
0V
(
V −1QΓQ′V −1

)
V −1 + oP (1) , since H ′0Q = Ir

= cΣWF̃V ΣF̃V
−1 + oP (1) , since ΣWF̃ = ΣWFH

′
0 and ΣF̃ = V −1QΓQ′V −1.

Proof of part d). This follows immediately from parts a), b) and c) of this Lemma.

B Appendix B: Proofs of results in Section 3

This Appendix is organized as follows. First, we provide some auxiliary lemmas, then we prove the

results in Section 3, and finally we prove the auxiliary lemmas. In the proofs we will repeatedly
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use the fact that OP ∗ (1)OP (1) = OP ∗ (1)OP ∗ (1) = OP ∗ (1) in probability and OP ∗ (1) oP (1) =

OP ∗ (1) oP ∗ (1) = oP ∗ (1) in probability. For a proof of these properties as well as other properties

that justify the transition between the bootstrap stochastic orders and the stochastic orders for the

original sample see Cheng and Huang (2010, Lemma 3) or Chang and Park (2003, Lemma 1).

Lemma B.1 Let H∗ = Ṽ ∗−1 F̃ ∗′F̃
T

Λ̃′Λ̃
N . Under Conditions A*-D*, we have that if δNT = min

(√
N,
√
T
)
,

a) H∗H∗′ = Ir +OP ∗
(
δ−2
NT

)
, in probability, i.e. H∗ is asymptotically an orthogonal matrix.

b) H∗ = H∗0 +OP ∗
(
δ−2
NT

)
, in probability, where H∗0 is a diagonal matrix with ±1 on the main diagonal.

c) Ṽ ∗ = H∗Ṽ H∗′ +OP ∗
(
δ−2
NT

)
= Ṽ +OP ∗

(
δ−2
NT

)
, in probability.

Lemma B.2 Let Assumptions 1-5 hold and suppose we generate bootstrap data
{
y∗t+h, X

∗
t

}
according

to the residual-based bootstrap DGP (7) and (8) by relying on bootstrap residuals
{
ε∗t+h

}
and {e∗t } such

that Conditions A*-D* are satisfied. Then, as N,T →∞,

1

T

T−h∑
t=1

(
F̃ ∗t −H∗F̃t

)
ε∗t+h = OP ∗

(
1

δNT
√
T

)
,

in probability, for h ≥ 0.

Lemma B.3 Suppose conditions A*-D* hold. Then,the following statements hold in probability, as

N,T →∞,

a)
1

T

T−h∑
t=1

(
F̃ ∗t −H∗F̃t

)(
F̃ ∗t −H∗F̃t

)′
=

1

N
Ṽ ∗−1H∗

[
1

T

T−h∑
t=1

(
Λ̃′e∗t√
N

)(
e∗′t Λ̃√
N

)]
H∗′Ṽ ∗−1

+OP ∗

(
1

T

)
+OP ∗

(
1

NδNT

)
+OP ∗

(
1√
NT

)
.

b)
1

T

T−h∑
t=1

H∗F̃t
(
F̃ ∗t −H∗F̃t

)′
= H∗

1

N

(
1

T

T−h∑
t=1

F̃tF̃
′
t

)[
1

T

T∑
s=1

(
Λ̃′e∗s√
N

)(
e∗′s Λ̃√
N

)](
F̃ ′F̃ ∗

T

)
Ṽ ∗−2

+OP ∗

(
1

δNT
√
T

)
+OP ∗

(
1

NδNT

)
.

c)
1

T

T−h∑
t=1

Wt

(
F̃ ∗t −H∗F̃t

)′
=

1

N

(
1

T

T−h∑
t=1

WtF̃
′
t

)[
1

T

T∑
s=1

(
Λ̃′e∗s√
N

)(
e∗′s Λ̃√
N

)](
F̃ ′F̃ ∗

T

)
Ṽ ∗−2

+OP ∗

(
1

δNT
√
T

)
+OP ∗

(
1

NδNT

)
.
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Lemma B.4 Suppose conditions A*-D* hold. For any h ≥ 0, if
√
T/N → c, 0 ≤ c <∞, then

1√
T

T−h∑
t=1

F̃ ∗t

(
F̃ ∗t −H∗F̃t

)′ (
H∗′
)−1

α̂ = c
(
H∗′0

)−1
[
Ṽ −1Γ∗Ṽ −1 + Γ∗Ṽ −2

]
α̂︸ ︷︷ ︸

≡B∗α

+ oP ∗ (1) ,

1√
T

T−h∑
t=1

Wt

(
F̃ ∗t −H∗F̃t

)′ (
H∗′
)−1

α̂ = c
[
Σ̃WF̃Γ∗Ṽ −2

]
α̂︸ ︷︷ ︸

≡B∗β

+ oP ∗ (1) ,

in probability, where Σ̃WF̃ = 1
T

∑T−h
t=1 WtF̃

′
t .

Proof of Lemma 3.1. The proof is based on the following identity:

F̃ ∗t −H∗F̃t = Ṽ ∗−1

 1

T

T∑
s=1

F̃ ∗s γ
∗
st︸ ︷︷ ︸

≡A∗1t

+
1

T

T∑
s=1

F̃ ∗s ζ
∗
st︸ ︷︷ ︸

≡A∗2t

+
1

T

T∑
s=1

F̃ ∗s η
∗
st︸ ︷︷ ︸

≡A∗3t

+
1

T

T∑
s=1

F̃ ∗s ξ
∗
st︸ ︷︷ ︸

≡A∗4t

 ,

where γ∗st = E∗
(

1
N

∑N
i=1 e

∗
ise
∗
it

)
, ζ∗st = 1

N

∑N
i=1 (e∗ise

∗
it − E∗ (e∗ise

∗
it)) , η

∗
st = 1

N

∑N
i=1 λ̃

′
iF̃se

∗
it = F̃ ′s

Λ̃′e∗t
N

and ξ∗st = 1
N

∑N
i=1 λ̃

′
iF̃te

∗
is = η∗ts. Ignoring Ṽ

∗−1 (which is OP ∗ (1)), it follows that

1

T

T∑
t=1

∥∥∥F̃ ∗t −H∗F̃t∥∥∥2
≤ 4

T

T∑
t=1

(
‖A∗1t‖

2 + ‖A∗2t‖
2 + ‖A∗3t‖

2 + ‖A∗4t‖
2
)
,

By the Cauchy-Schwartz inequality,
∥∥∥∑T

s=1 F̃
∗
s γ
∗
st

∥∥∥2
≤
(∑T

s=1

∥∥∥F̃ ∗s ∥∥∥2
)(∑T

s=1 γ
∗2
st

)
, implying that

1

T

T∑
t=1

‖A∗1t‖
2 ≤ 1

T

(
1

T

T∑
s=1

∥∥∥F̃ ∗s ∥∥∥2
)

︸ ︷︷ ︸
=
‖F̃∗‖2
T

=r because F̃∗′F̃∗
T

=Ir

(
1

T

T∑
t=1

T∑
s=1

γ∗2st

)
︸ ︷︷ ︸

=OP (1) by Condition A*(b).

= OP

(
1

T

)
.

For the second term, we have that 1
T

∑T
t=1 ‖A∗2t‖

2 ≤
(

1
T

∑T
s=1

∥∥∥F̃ ∗s ∥∥∥2
)(

1
T 2
∑T

t=1

∑T
s=1 |ζ∗st|

2
)

=

OP ∗
(

1
N

)
. In particular, by Condition A*(c), we can show that

1

T 2

T∑
t=1

T∑
s=1

E∗ |ζ∗st|
2 =

1

N

1

T 2

T∑
t=1

T∑
s=1

E∗

∣∣∣∣∣ 1√
N

N∑
i=1

(e∗ise
∗
it − E∗ (e∗ise

∗
it))

∣∣∣∣∣
2

= OP

(
1

N

)
,

which explains why the second term is OP ∗
(

1
N

)
. For the third term,

1

T

T∑
t=1

‖A∗3t‖
2 =

1

T

T∑
t=1

T−2

∥∥∥∥∥
T∑
s=1

F̃ ∗s F̃
′
s

Λ̃′e∗t
N

∥∥∥∥∥
2

≤ 1

T

T∑
t=1

∥∥∥∥∥ Λ̃′e∗t
N

∥∥∥∥∥
2 ∥∥∥∥∥T−1

T∑
s=1

F̃ ∗s F̃
′
s

∥∥∥∥∥
2

= OP ∗

(
1

N

)
,

since
∥∥∥T−1

∑T
s=1 F̃

∗
s F̃
′
s

∥∥∥2
≤ r2, whereas by Condition B*(d) and Markov’s inequality, 1

T

∑T
t=1

∥∥∥ Λ̃′e∗t
N

∥∥∥2
=

OP ∗
(

1
N

)
. The fourth term follows by the same arguments.
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Proof of Theorem 3.1. The proof follows the proof of Theorem 2.1. In particular, we can write the

bootstrap analogue of (17), viz
√
T
(
δ̂
∗ − δ∗

)
=
(

1
T

∑T−h
t=1 ẑ∗t ẑ

∗′
t

)−1
(A∗ +B∗ + C∗) , where conditional

on the original data, with probability converging to one, we have that

A∗ = Φ∗
1√
T

T−h∑
t=1

ẑtε
∗
t+h →d∗ N

(
0,Φ∗0

(
Φ0ΩΦ′0

)
Φ∗′0
)
,

given Conditions D*(b) and E*, and given that Φ∗0 ≡ p lim Φ∗. In addition, B∗ = 1√
T

∑T−h
t=1

(
F̃ ∗t −H∗F̃t

)
ε∗t+h =

oP ∗ (1) (given Lemma B.2); and

C∗ = − 1√
T

T−h∑
t=1

ẑ∗t

(
F̃ ∗t −H∗F̃t

)′ (
H∗−1

)′
α̂→P ∗ −c

(
Φ∗′0
)−1

(
B∗α
B∗β

)
,

where B∗α and B
∗
β are defined in Lemma B.4. Under Assumptions 1-5, p lim Ṽ = V , p lim α̂ = (H ′0)−1 α,

p lim Σ̃WF̃ = ΣWF̃ , and p lim Γ∗ = QΓQ′ by Condition F*, which implies that B∗α →P Bα and B∗β →P

Bβ; and finally 1
T

∑T−h
t=1 ẑ∗t ẑ

∗′
t = Φ∗0 (Φ0ΣzzΦ

′
0) Φ∗′0 + oP ∗ (1). This implies that

√
T
(
δ̂
∗ − δ∗

)
→d∗

N
(
−c (Φ∗′0 )−1 ∆δ, (Φ

∗′
0 )−1 Σδ (Φ∗0)−1

)
, in probability.

Proof of Corollary 3.1. By Theorem 2.1, under Assumptions 1-5, and if
√
T/N → c, 0 ≤ c <

∞,
√
T
(
δ̂ − δ

)
→d Z ∼ N (−c∆δ,Σδ) . Thus, from a multivariate version of Polya’s Theorem (cf.

Bhattacharya and Rao (1986)), it follows that supx

∣∣∣P (√T (δ̂ − δ) ≤ x)− Φ (x;−c∆δ,Σδ)
∣∣∣ = o (1),

where Φ (x;−c∆δ,Σδ) denotes the distribution function of Z. Then, the result follows if we show that

sup
x

∣∣∣P (√T (Φ∗′δ̂
∗ − δ̂

)
≤ x

)
− Φ (x;−c∆δ,Σδ)

∣∣∣ = oP (1) . (21)

Under the stated assumptions, from Theorem 3.1 we have that
√
T
(

Φ∗′δ̂
∗ − δ̂

)
→d∗ N (−c∆δ,Σδ), in

probability. The result (21) follows from Polya’s Theorem.

Proof of Lemma B.1. Part a) follows from part b). For part b), by definition,H∗ = Ṽ ∗−1
(
F̃ ∗′F̃
T

)
Λ̃′Λ̃
N =

Ṽ ∗−1H∗ Λ̃′Λ̃
N +OP ∗

(
δ−2
NT

)
, given that H∗ = F̃ ∗′F̃ /T +OP ∗

(
δ−2
NT

)
. Left multiplying both sides by Ṽ ∗

yields

Ṽ ∗H∗ = H∗
Λ̃′Λ̃

N
+OP ∗

(
δ−2
NT

)
= H∗Ṽ +OP ∗

(
δ−2
NT

)
, (22)

since Ṽ = Λ̃′Λ̃
N by construction of the principal components. By Lemma A.3 of Bai (2003), Ṽ →P V > 0

and therefore we can write that Ṽ ∗H∗ = H∗V +oP ∗ (1) , or transposing, that V H∗′ = H∗′Ṽ ∗+oP ∗ (1) .

Thus, H∗′ is (for large N and T ) the matrix of eigenvectors of V . Since V is a diagonal matrix, H∗′ is

also diagonal, asymptotically. Moreover, because V has distinct eigenvalues (by assumption), it follows

that its eigenvectors have only one nonzero value and this is +1 or -1 (because H∗ is orthogonal).

Therefore H∗′ is for large N and T a diagonal matrix with ±1 in the main diagonal (in particular,

H∗ = diag(sign(F̃ ∗′F̃ ))). Part c) follows from (22) by right multiplying by H∗′ and using parts a)

and b).
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Proof of Lemma B.2. The proof follows exactly as the proof of Lemma A.1 using conditions A*-D*

instead of Assumptions 1-5.

Proof of Lemma B.3. Proof of part a). We follow closely the proof of Lemma A.2. Specifically, we

analyze each of the terms in

1

T

T−h∑
t=1

(
F̃ ∗t −H∗F̃t

)(
F̃ ∗t −H∗F̃t

)′
= Ṽ ∗−1 1

T

T−h∑
t=1

(A∗1t +A∗2t +A∗3t +A∗4t) (A∗1t +A∗2t +A∗3t +A∗4t)
′ Ṽ ∗−1.

In particular, by Lemma 3.1, and the appropriate bootstrap high level conditions, we can show that:
1
T

∑T−h
t=1 A∗1tA

∗′
1t = OP ∗

(
1
T

)
, using Condition A*(b); 1

T

∑T−h
t=1 A∗2tA

∗′
2t = OP ∗

(
1

Nδ2NT

)
, using Conditions

A*(c) and B*(b); 1
T

∑T−h
t=1 A∗3tA

∗′
3t = 1

NH
∗
(
F̃ ′F̃
T

)
1
T

∑T−h
t=1

(
Λ̃′e∗t√
N

)(
e∗′t Λ̃√
N

)(
F̃ ′F̃
T

)
H∗′+OP ∗

(
1

NδNT

)
, us-

ing Condition B*(d); each of 1
T

∑T−h
t=1 A∗4tA

∗′
4t,

1
T

∑T−h
t=1 A∗2tA

∗′
3t,

1
T

∑T−h
t=1 A∗2tA

∗′
4t and

1
T

∑T−h
t=1 A∗3tA

∗′
4t is

OP ∗
(

1
NδNT

)
, using condition B*(d); 1

T

∑T−h
t=1 A∗1tA

∗′
2t = OP ∗

(
1

δNT
√
NT

)
; 1
T

∑T−h
t=1 A∗1tA

∗′
3t and

1
T

∑T−h
t=1 A∗1tA

∗′
4t

are OP ∗
(

1√
NT

)
, in probability. This implies the result. Proof of part b). We analyze each of the terms

in

H∗
1

T

T−h∑
t=1

F̃t (A∗1t +A∗2t +A∗3t +A∗4t)
′ Ṽ ∗−1 = H∗

(
b∗f1 + b∗f2 + b∗f3 + b∗f4

)
Ṽ ∗−1,

where we let b∗fi ≡ 1
T

∑T−h
t=1 F̃tA

∗′
it , for j = 1, . . . , 4. Following exactly the same steps as in the proof of

part b) of Lemma A.2, we can show that: b∗f1 = OP ∗
(

1
δNT
√
T

)
, in probability, given Condition B*(a)

and Lemma 3.1; b∗f2 = OP ∗
(

1√
TN

)
, given Condition B*(b) and Lemma 3.1; b∗f3 = OP ∗

(
1√
TN

)
, given

Condition B*(c) and Lemma 3.1; b∗f4 = 1
N

(
1
T

∑T−h
t=1 F̃tF̃

′
t

) [
1
T

∑T
s=1

(
Λ̃′e∗s√
N

)(
e∗′s Λ̃√
N

)](
F̃ ′F̃ ∗

T

)
Ṽ ∗−1 +

OP ∗
(

1√
TN

)
+OP ∗

(
1

NδNT

)
, given Condition B*(c) and Lemma 3.1. Proof of part c). This follows by

the same arguments used in the proof of Lemma A.1.c).

Proof of Lemma B.4. Part a) follows from Lemma B.3.a) and Lemma B.1.c), given in particular

the assumption that
√
T/N → c, the fact that H∗0 = diag (±1), and given Condition B*(e). Similarly,

part b) follows from part b) of Lemma B.3 and part c) of Lemma B.1, given Condition B*(e) and the

fact that 1
T

∑T−h
t=1 F̃tF̃

′
t = Ir+oP (1) , that F̃

′F̃ ∗

T Ṽ ∗−1 = Ṽ −1H∗′, and that H∗−1 (H∗′)−1 = Ir+oP ∗ (1),

in probability. Part c) follows similarly using part c) of Lemma B.3.

C Appendix C: Proofs of results in Section 4

First, we state an auxiliary result and its proof. Then we prove Theorem 4.1.

Lemma C.1 Suppose Assumptions 1-5 hold. If in addition either: (1) {Fs}, {λi} and {eit} are
mutually independent and for some p ≥ 2, E |eit|2p ≤ M < ∞, E ‖λi‖p ≤ M < ∞ and E ‖Ft‖p ≤
M < ∞, or (2) for some p ≥ 2, E |eit|3p ≤ M < ∞, E ‖λi‖3p ≤ M < ∞ and E ‖Ft‖3p ≤ M < ∞,
it follows that (i) 1

T

∑T
t=1

∥∥∥F̃t −HFt∥∥∥p = OP (1) ; (ii) 1
N

∑N
i=1

∥∥∥λ̃i −H−1′λi

∥∥∥p = OP (1) ; and (iii)
1
TN

∑T
t=1

∑N
i=1 ẽ

p
it = OP (1) .
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Proof of Lemma C.1. Proof of (i). We rely on the following identity (see Bai and Ng (2002),

proof of Theorem 1): F̃t−HFt = Ṽ −1
(

1
T

∑T
s=1 F̃sψst + 1

T

∑T
s=1 F̃sηst + 1

T

∑T
s=1 F̃sξst

)
, where ψst =

1
N

∑N
i=1 eiseit; ηst = 1

N

∑N
i=1 λ

′
iFseit; and ξst = ηts. It follows that by the cr inequality,

1

T

T∑
t=1

∥∥∥F̃t −HFt∥∥∥p ≤ 3p−1
∥∥∥Ṽ −1

∥∥∥p( 1

T

T∑
t=1

at +
1

T

T∑
t=1

bt +
1

T

T∑
t=1

ct

)
,

where at = 1
T p

∥∥∥∑T
s=1 F̃sψst

∥∥∥p ; bt = 1
T p

∥∥∥∑T
s=1 F̃sηst

∥∥∥p ; and ct = 1
T p

∥∥∥∑T
s=1 F̃sξst

∥∥∥p . Let χst denote
either ψst, ηst or ξst. We can write∥∥∥∥∥

T∑
s=1

F̃sχst

∥∥∥∥∥
p

=

∥∥∥∥∥
T∑
s=1

F̃sχst

∥∥∥∥∥
2
p/2

≤
(

T∑
s=1

∥∥∥F̃s∥∥∥2
T∑
s=1

|χst|2
)p/2

.

It follows that

1

T

T∑
t=1

1

T p

∥∥∥∥∥
T∑
s=1

F̃sχst

∥∥∥∥∥
p

≤ rp/2 1

T

T∑
t=1

(
1

T

T∑
s=1

|χst|2
)p/2

≤ rp/2 1

T 2

T∑
t=1

T∑
s=1

|χst|p ,

given that 1
T

∑T
s=1

∥∥∥F̃s∥∥∥2
= r and where the last inequality follows again by the cr inequality. Thus

it suffi ces to show that E |χst|p ≤ M < ∞ to prove that the above term is OP (1). Starting with

χst = ψst,

E |ψst|p = E

∣∣∣∣∣ 1

N

N∑
i=1

eiteis

∣∣∣∣∣
p

≤ 1

N

N∑
i=1

E |eiteis|p ≤
1

N

N∑
i=1

(
E |eit|2p

)1/2 (
E |eis|2p

)1/2
≤M <∞,

given that we assume E |eit|2p ≤M <∞. When χst = ηst, we have that

E
∣∣λ′iFseit∣∣p ≤ (E ‖λieit‖ 3p2 )2/3 (

E ‖Fs‖3p
)1/3

≤
(
E ‖λi‖3pE |eit|3p

)1/3 (
E ‖Fs‖3p

)1/3
≤M,

which implies E |ηst|p ≤ M . Note that if we assume that {λi}, {Fs} and {eit} are three mutually
independent groups of random variables, then it suffi ces that E ‖λi‖p ≤ M , E ‖Fs‖p ≤ M , and

E |eit|p ≤M to bound E
∣∣λ′iFseit∣∣p . The term that depends on χst = ξst can be dealt with similarly.

Proof of (ii). Note that Λ̃ = X′F̃
T . Since X = FΛ′+e, it follows that Λ̃′ = F̃ ′F

T Λ′+ F̃ ′e
T , thus implying

that λ̃i = F̃ ′F
T λi + F̃ ′ei

T , where ei = (ei1, . . . , eiT )′. We can write

λ̃i =
F̃ ′FH ′

T
H ′−1λi+

F̃ ′ei
T

= H ′−1λi−T−1F̃ ′
(
F̃ − FH ′

)
H ′−1λi+T

−1
(
F̃ − FH ′

)′
ei+T

−1
(
FH ′

)′
ei.

Thus,

1

N

N∑
i=1

∥∥∥λ̃i −H−1′λi

∥∥∥p ≤ 3p−1

 1
N

∑N
i=1

∥∥∥T−1F̃ ′
(
F̃ − FH ′

)
H ′−1λi

∥∥∥p
+ 1
N

∑N
i=1

∥∥∥∥T−1
(
F̃ − FH ′

)′
ei

∥∥∥∥p + 1
N

∑N
i=1

∥∥T−1 (FH ′)′ ei
∥∥p
 .
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For the first term, we have that

1

N

N∑
i=1

∥∥∥T−1F̃ ′
(
F̃ − FH ′

)
H ′−1λi

∥∥∥p ≤ ∥∥∥T−1/2F̃
∥∥∥p ∥∥∥T−1/2

(
F̃ − FH ′

)∥∥∥p ∥∥H ′−1
∥∥p 1

N

N∑
i=1

‖λi‖p ,

where
∥∥∥T−1/2F̃

∥∥∥p = rp/2,
∥∥∥T−1/2

(
F̃ − FH ′

)∥∥∥p = OP

(
δ−pNT

)
= OP (1),

∥∥H ′−1
∥∥p = OP (1), and the

last factor isOP (1) given that E ‖λi‖p ≤M <∞. For the second term, 1
N

∑N
t=1

∥∥∥∥T−1
(
F̃ − FH ′

)′
ei

∥∥∥∥p ≤∥∥∥T−1/2
(
F̃ − FH ′

)∥∥∥p 1
N

∑N
t=1

∥∥T−1/2ei
∥∥p , where the first factor is OP (1) and the second factor is

dominated by

1

N

N∑
i=1

(∥∥∥T−1/2ei

∥∥∥2
)p/2

=
1

N

N∑
t=1

(
T−1e′iei

)p/2
=

1

N

N∑
t=1

(
T−1

T∑
t=1

e2
it

)p/2
≤ 1

NT

N∑
t=1

T∑
t=1

epit,

which is OP (1) given the assumption that E |eit|p ≤ M. The third term can be bounded similarly

using in particular the fact that E ‖Ft‖2 ≤M <∞.
Proof of (iii). We can write ẽit = eit − λ′iH−1

(
F̃t −HFt

)
−
(
λ̃i −H−1′λi

)′
F̃t, which implies that

1

NT

T∑
t=1

N∑
i=1

|ẽit|p ≤ 3p−1 1

NT

T∑
t=1

N∑
i=1

|eit|p + 3p−1 1

N

N∑
i=1

‖λi‖p
∥∥H−1

∥∥p 1

T

T∑
t=1

∥∥∥F̃t −HFt∥∥∥p
+3p−1 1

N

N∑
i=1

∥∥∥λ̃i −H−1′λi

∥∥∥p 1

T

T∑
t=1

∥∥∥F̃t∥∥∥p .
The first term is OP (1) given that E |eit|p = O (1); the second term is OP (1) since E ‖λi‖p = O (1)

and given part (i); and the third term is OP (1) given parts (ii) and (iii), since in particular

1

T

T∑
t=1

∥∥∥F̃t∥∥∥p ≤ 1

T

T∑
t=1

∥∥∥HFt +
(
F̃t −HFt

)∥∥∥p ≤ 2p−1

(
‖H‖p 1

T

T∑
t=1

‖Ft‖p +
1

T

T∑
t=1

∥∥∥F̃t −HFt∥∥∥p) = OP (1) .

Proof of Theorem 4.1. We verify Condition A*-F*. We start with Condition A*. Since e∗it =

ẽitηit where ηit is i.i.d.(0, 1) across (i, t), part a) follows immediately. For part b), note that γ∗st =

1
N

∑N
i=1 ẽitẽis1 (t = s) , which implies that 1

T

∑T
t,s γ

∗2
st = 1

T

∑T
t=1

(
1
N

∑N
i=1 ẽ

2
it

)2
. This expression is

bounded by 1
T

∑T
t=1

1
N

∑N
i=1 ẽ

4
it, which is OP (1) under our assumptions by an application of Lemma

C.1 (iii) with p = 4. For c), note that for any (t, s),

E∗

∣∣∣∣∣ 1√
N

N∑
i=1

(e∗ite
∗
is − E∗ (e∗ite

∗
is))

∣∣∣∣∣
2

=
1

N

N∑
i=1

N∑
j=1

Cov∗
(
e∗ite
∗
is, e

∗
jte
∗
js

)
=

1

N

N∑
i=1

ẽ2
itẽ

2
isV ar (ηitηis) ,

given that Cov∗
(
e∗ite
∗
is, e

∗
jte
∗
js

)
= 1(i = j)ẽ2

itẽ
2
isV ar (ηitηis). Thus, condition A*(c) becomes

1

T 2

T∑
t=1

T∑
s=1

1

N

N∑
i=1

ẽ2
itẽ

2
isV ar (ηitηis)︸ ︷︷ ︸

≤η̄

≤ η̄ 1

N

N∑
i=1

(
1

T

T∑
t=1

ẽ2
it

)2

≤ η̄C 1

N

1

T

N∑
i=1

T∑
t=1

ẽ4
it = OP (1) ,
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for some constants η̄ and C, which holds given Lemma C.1 (iii) with p = 4. For Condition B*(a),

using the bootstrap time series independence, we have that 1
T

∑T
t=1

∑T
s=1 F̃sF̃

′
tγ
∗
st = 1

T

∑T
t=1 F̃tF̃

′
tγ
∗
tt =

1
T

∑T
t=1 F̃tF̃

′
t

(
1
N

∑N
i=1 ẽ

2
it

)
, which is bounded by

(
1

T

T∑
t=1

∥∥∥F̃tF̃ ′t∥∥∥2
)1/2

 1

T

T∑
t=1

(
1

N

N∑
i=1

ẽ2
it

)2
1/2

≤
(

1

T

T∑
t=1

∥∥∥F̃t∥∥∥4
)1/2 [

1

T

1

N

T∑
t=1

N∑
i=1

ẽ4
it

]1/2

= OP (1) .

For Condition B*(b), we have that

1

T

T∑
t=1

E∗

∥∥∥∥∥ 1√
TN

T∑
s=1

N∑
i=1

ẑs (e∗ite
∗
is − E∗ (e∗ite

∗
is))

∥∥∥∥∥
2

=
1

T

T∑
t=1

1

T

T∑
s=1

T∑
l=1

ẑ′sẑl
1

N

N∑
i=1

N∑
j=1

Cov∗
(
e∗ite
∗
is, e

∗
jte
∗
jl

)
,

where by the bootstrap cross sectional independence, we can show that Cov∗
(
e∗ite
∗
is, e

∗
jte
∗
jl

)
= 0 when

i 6= j for any t, s, l, and when i = j, Cov∗ (e∗ite
∗
is, e

∗
ite
∗
il) = 1(s = l)ẽ2

itẽ
2
isV ar

∗ (ηitηis) . It follows that

1

T

T∑
t=1

E∗

∥∥∥∥∥ 1√
TN

T∑
s=1

N∑
i=1

ẑs (e∗ite
∗
is − E∗ (e∗ite

∗
is))

∥∥∥∥∥
2

≤ η̄ 1

N

N∑
i=1

(
1

T

T∑
t=1

ẽ2
it

)(
1

T

T∑
s=1

ẑ′sẑsẽ
2
is

)

≤ η̄

[
1

N

1

T

N∑
i=1

T∑
t=1

ẽ4
it

]1/2 [
1

T

T∑
s=1

‖ẑs‖4
1

N

1

T

N∑
i=1

T∑
s=1

ẽ4
is

]1/2

= OP (1) .

Next consider Condition B*(c). We can show that

E∗

∥∥∥∥∥ 1√
T

T∑
t=1

Λ̃′e∗t√
N
ẑ′t

∥∥∥∥∥
2

=
1

T

T∑
t=1

‖ẑt‖2
1

N

N∑
i=1

∥∥∥λ̃i∥∥∥2
ẽ2
it ≤

(
1

T

T∑
t=1

‖ẑt‖4
)1/2

 1

T

T∑
t=1

(
1

N

N∑
i=1

∥∥∥λ̃i∥∥∥2
ẽ2
it

)2
1/2

,

where by Cauchy-Schwartz,

1

T

T∑
t=1

(
1

N

N∑
i=1

∥∥∥λ̃i∥∥∥2
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≤ 1
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In particular, 1
N

∑N
i=1

∥∥∥λ̃i∥∥∥4
≤ 23

(
1
N

∑N
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∥∥∥H−1′λi
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+ 1

N

∑N
i=1

∥∥∥λ̃i −H−1′λi

∥∥∥4
)

= OP (1) by Lemma

C.1(ii) with p = 4. For Condition B*(d), we have that

1
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= OP (1) .

For Condition B*(e), we show that A∗ = 1
T

∑T
t=1

1
N

∑N
i=1

∑N
j=1 λ̃iλ̃

′
j

(
e∗ite
∗
jt − E∗

(
e∗ite
∗
jt

))
= oP (1) .

This expression has mean zero under the bootstrap measure by construction. So, it suffi ces to show

that its variance tends to zero in probability. Take the case where the number of factors r is equal to

1, for simplicity. Then,

V ar∗ (A∗) =
1

T 2

T∑
t=1

T∑
s=1

1

N2

N∑
i,j,k,l

λ̃iλ̃j λ̃lλ̃kCov
∗ (e∗ite∗jt, e∗lse∗ks) .
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Using the properties of the wild bootstrap, we can show that Cov∗
(
e∗ite
∗
jt, e

∗
lse
∗
ks

)
= 0 if t 6= s, for any

(i, j, k, l) , and

Cov∗
(
e∗ite
∗
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∗
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∗
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)
=


ẽ4
itV ar

∗ (η2
it

)
if i = j = k = l

ẽ2
itẽ

2
jt, if i = k 6= j = l

0, otherwise
,

which implies that V ar∗ (A∗) ≤ η̄ 1
T

1
N

∑N
i=1 λ̃

4
i

1
NT

∑T
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∑N
i=1 ẽ

4
it = OP

(
1
T

)
= oP (1) , given that

1
N
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4
i = OP (1) and 1

NT
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∑T
t=1 ẽ

4
it = OP (1) by an application of lemma C.1 with p = 4.

Thus, Γ∗ = 1
T

∑T
t=1

1
N

∑N
i=1 λ̃

2
i ẽ

2
it for the wild bootstrap. Condition F* is satisfied because by Bai and

Ng (2006), Γ∗ →P QΓQ′. Next, we verify Condition C*. For t = 1, . . . , T − h, let ε∗t+h = ε̂t+hvt+h,

where vt+h ∼i.i.d.(0, 1). Part a) follows as Condition B*(b), using the independence between ε∗t+h and

e∗it. For part b), we have that
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ẽ2
it

)2
1/2

= OP (1) ,

where the second equality uses the independence between {e∗it} and {ε∗s} and the fact that E∗
(
ε∗t+hε

∗
s+h

)
=

0 if t 6= s and E∗
(
e∗ite
∗
js

)
= 1 (i = j and t = s) ẽ2

it. Part c) follows because γ
∗
st = 0 for t 6= s and by

repeated application of Cauchy-Schwartz inequality, we have that
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which isOP ∗ (1) provided 1
T

∑T−h
t=1 ε∗4t+h = OP ∗ (1) in probability. For this, it suffi ces that 1

T

∑T−h
t=1 E∗

(
ε∗4t+h

)
=

OP (1) . But by the properties of the wild bootstrap on ε∗t+h, we have that for some constant C <∞.
1
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= 1
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∗ (v4
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)
≤ C 1

T

∑T−h
t=1 ε̂4

t+h = OP (1). Finally. we verify Condition

D*. E∗
(
ε∗t+h

)
= 0 by construction. Moreover, we have that 1

T

∑T−h
t=1 E∗

∣∣ε∗t+h∣∣2 = 1
T

∑T−h
t=1 ε̂2

t+h ≤(
1
T
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t=1 ε̂4

t+h
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= OP (1). So, part a) is verified. For part b), let w∗t ≡ (Ω∗)−1/2 ẑtε

∗
t+h and note

that w∗t is an heterogeneous array of independent random vectors (given that ε∗t+h is conditionally

independent but heteroskedastic). Thus, we apply a CLT for heterogeneous independent vectors (see

e.g. Proposition 2.27 of van der Vaart (1998)). Since E∗ (w∗t ) = 0 and V ar∗
(
T−1/2

∑T−h
t=1 w∗t

)
= I,

it suffi ces to verify Lyapunov’s condition (a suffi cient condition for Lindeberg’s condition). In partic-

ular, we can show that for some d > 1, T−d
∑T−h

t=1 E∗ ‖w∗t ‖
2d = OP

(
T 1−d) = oP (1) . Condition E* is

satisfied since Ω∗ converges to Φ0ΩΦ′0 > 0, by Bai and Ng (2006) and Condition F* was verified in

the main text.
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T = 50 T = 100 T = 200 T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

plug-in 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DGP 1 WB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

alpha = 0

homo, homo

OLS 95.0 94.8 95.0 94.2 95.3 94.9 94.6 95.1 94.6

plug-in 92.8 92.1 92.3 92.8 94.1 93.8 93.8 94.6 93.8

True factor 95.1 94.6 95.2 94.4 95.1 94.9 94.5 95.4 94.4

WB 97.3 96.3 96.0 96.0 95.8 95.1 96.0 95.5 94.8

bias -0.17 -0.14 -0.12 -0.11 -0.08 -0.07 -0.09 -0.06 -0.04

plug-in -0.09 -0.09 -0.10 -0.05 -0.05 -0.05 -0.03 -0.03 -0.03

DGP 2 WB -0.12 -0.10 -0.10 -0.09 -0.07 -0.06 -0.07 -0.05 -0.04

alpha = 1

homo, homo

OLS 71.5 65.2 52.0 84.6 84.2 80.3 89.1 90.1 89.0

plug-in 84.4 85.8 86.4 88.8 91.2 91.9 90.6 92.6 92.5

True factor 95.1 94.6 95.2 94.4 95.1 94.9 94.5 95.4 94.4

WB 92.2 90.9 90.4 93.4 94.0 94.0 94.1 94.9 94.2

Each part of the table reports estimates of the bias in the estimation of α and the associated coverage rate for the OLS estimator, the bias-corrected estimator that 

corrects bias by plugging in sample analogues of the quantities in Theorem 3.1, and the wild bootstrap respectively. For reference, we also report coverage rate for the 

OLS estimator that uses the true factors instead of factors estimated by principal components. All results are based on 5000 replications and B=399 bootstraps.

Bias

Coverage rate

Coverage rate

Table 1: Bias and coverage rate of 95% CIs for delta - Homoskedastic cases

N = 50 N = 100 N = 200

Bias



T = 50 T = 100 T = 200 T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

DGP 3 bias -0.17 -0.14 -0.13 -0.12 -0.09 -0.07 -0.09 -0.06 -0.04

alpha = 1 plug-in -0.09 -0.09 -0.10 -0.05 -0.05 -0.05 -0.03 -0.03 -0.03

hetero, homo WB -0.12 -0.10 -0.10 -0.09 -0.07 -0.06 -0.07 -0.05 -0.04

DGP 4 bias -0.19 -0.15 -0.14 -0.12 -0.10 -0.08 -0.10 -0.06 -0.05

alpha = 1 plug-in -0.10 -0.10 -0.10 -0.05 -0.06 -0.06 -0.03 -0.03 -0.03

hetero, hetero WB -0.13 -0.12 -0.11 -0.10 -0.08 -0.07 -0.08 -0.06 -0.04

DGP 5 bias -0.20 -0.16 -0.14 -0.14 -0.10 -0.08 -0.10 -0.07 -0.05

alpha = 1 plug-in -0.09 -0.10 -0.10 -0.05 -0.06 -0.06 -0.03 -0.03 -0.03

hetero, AR+hetero WB -0.12 -0.12 -0.11 -0.09 -0.08 -0.07 -0.07 -0.06 -0.04

DGP 6 bias -0.14 -0.12 -0.12 -0.08 -0.07 -0.07 -0.05 -0.04 -0.03

alpha = 1 plug-in -0.07 -0.07 -0.07 -0.04 -0.04 -0.04 -0.02 -0.02 -0.02

hetero, CS+homo WB -0.05 -0.05 -0.04 -0.04 -0.03 -0.03 -0.03 -0.02 -0.02

Table 2. Bias in estimation of alpha - More general cases

N = 50 N = 100 N = 200

The table reports estimates of the bias in the estimation of α for the OLS estimator, the bias-corrected estimator that corrects bias by plugging in sample 

analogues of the quantities in Theorem 3.1, and the wild bootstrap respectively. All results are based on 5000 replications and B=399 bootstraps.



T = 50 T = 100 T = 200 T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

DGP 3 OLS 60.3 57.2 46.5 75.1 78.2 75.7 81.4 86.1 87.8

alpha = 1 plug-in 77.3 81.5 84.7 81.3 87.7 89.1 85.2 89.5 91.7

hetero, homo True factor 91.0 92.3 93.9 90.8 93.4 93.1 90.7 93.2 94.1

WB 91.4 91.8 92.3 91.9 93.9 93.1 93.4 94.1 94.7

DGP 4 OLS 56.2 52.9 39.8 72.3 75.5 72.8 80.4 85.4 86.4

alpha = 1 plug-in 75.8 80.2 82.6 80.8 86.2 89.4 84.1 88.9 91.5

hetero, hetero True factor 90.6 92.6 94.2 90.3 93.4 94.4 90.6 92.8 94.1

WB 91.7 92.3 91.9 92.3 93.5 93.8 92.9 94.1 94.6

DGP 5 OLS 50.5 50.0 39.4 69.6 74.3 71.8 77.8 84.2 86.0

alpha = 1 plug-in 70.4 78.1 81.8 78.4 86.1 88.2 82.5 88.6 91.6

hetero, AR + hetero True factor 91.0 92.3 93.9 90.8 93.4 93.1 90.7 93.2 94.1

WB 88.6 91.0 92.0 90.2 93.2 92.7 92.3 93.6 94.3

DGP 6 OLS 70.6 64.8 53.1 81.5 83.2 80.2 87.1 89.1 90.1

alpha = 1 plug-in 80.1 81.2 80.2 84.7 88.8 88.7 88.3 90.8 92.4

hetero, CS + homo True factor 91.0 92.3 93.9 90.8 93.4 93.1 90.7 93.2 94.1

WB 83.0 78.9 70.8 88.2 89.0 85.6 92.2 92.4 92.2

Table 3: Coverage rate of 95% CIs for delta - More general cases

N = 50 N = 100 N = 200

Each part of the table reports estimates of the bias in the estimation of α and the associated coverage rate for the OLS estimator, the bias-corrected 

estimator that corrects bias by plugging in sample analogues of the quantities in Theorem 3.1, and the wild bootstrap respectively. For reference, we also 

report coverage rate for the OLS estimator that uses the true factors instead of factors estimated by principal components. All results are based on 5000 

replications and B=399 bootstraps.


