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Abstract

Generalizations of the point-optimal panel unit root tests of Moon,
Perron, and Phillips (2007; MPP) are developed to cover cases of serially
correlated errors. The resulting statistics involve two modi�cations rela-
tive to those in MPP: (i) the error variance is replaced by the long-run
variance; (ii) centering of the statistic is adjusted to correct for second-
order bias e¤ects induced by the correlation between the error and lagged
dependent variable.

JEL Classi�cation: C22; C23

Keywords: Point optimal test; Correction; Incidental trends; Long run
variance; Serial dependence; Trend likelihood.

1 Introduction

There has been much recent interest in testing for the presence of stochastic
trends in large panels (e.g., see Breitung and Pesaran (2008) and Breitung and
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Westerlund (2011)). A prototypical model consists of a deterministic trend
component dit and an (unobserved) stochastic component component yit for
some observable panel observations zit for individual i = 1; :::; n in period t =
1; :::; T satisfying

zit = dit + yit; (1)

yit = �iyit�1 + uit;

where uit is an error term that has zero mean and is stationary over time and
yi0 = 0 for simplicity. Dynamic panel models with incidental trend components
of this type arise in many applications in microeconometrics, multi-country
growth studies, and international �nance. Empirical interest often centers on the
individual dynamics and whether there is commonality and persistence across
individuals, i.e. that the autoregressive parameters �i are all unity, or whether
such commonality occurs for certain subgroups of individuals.
Moon, Perron, and Phillips (2007, MPP thereafter) developed tests that are

point optimal against a speci�c alternative hypothesis. MPP adopted a local-
alternative setup, specifying the autoregressive parameter as lying in a local
vicinity of unity whose width narrows as the sample size increases according to
the form

�i = 1�
�i
n�T

for some constant � > 0; (2)

where �i is a sequence of iid random variables and � is a parameter de�ning the
width of the vicinity as n!1. The null hypothesis of interest is then

H0 : �i = 0 a.s. (i:e:; �i = 1) for all i; (3)

with the alternative

H1 : �i 6= 0 (i:e:; �i 6= 1) for some i0s: (4)

The MPP tests are point optimal in the sense of giving highest power against
a speci�c set of �0is: These tests were derived under the assumption that the error
term uit is independent across individual units and over time.
Independence assumptions are not realistic in many empirical applications

and the current work extends the MPP tests by allowing for serially correlated
errors uit. Section 6.4 (p. 436) of MPP brie�y mentioned this extension. Here
we provide explicit test statistics that have optimal asymptotic properties. The
modi�ed tests replace estimated variances of the errors in MPP with estimated
long-run variances and adjust centering terms. Our main purpose is to provide
the form of the modi�ed tests and give their asymptotic properties so that they
may be used in empirical work.
The paper is organized as follows. Section 2 shows how to construct the

tests, gives results for cases with no �xed e¤ects, �xed e¤ects and incidental
trends, and discusses implementation. Section 3 reports some simulations �nd-
ings, Section 4 concludes, and the Appendix provides technical derivations and
supporting lemmas.
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2 Tests under Serial Correlation

Following MPP, the analysis below considers three deterministic trend cases:
(i) no individual e¤ects, that is, dit = 0 and zit = yit; (ii) �xed e¤ects, i.e.,
dit = b0i; and (iii) heterogenous or incidental linear trends, i.e., dit = bi0 +
bi1 (t� 1). In each case, we proceed in three steps. We �rst de�ne the likelihood
ratio (LR) statistic under Gaussianity, which is known to be optimal by the
Neyman-Pearson lemma when the null and alternative hypotheses are simple.
We then show that this statistic can be approximated by a simpler version with
parameters that are consistently estimable. We �nally derive the asymptotic
distribution of this approximation (with appropriate recentering). In all three
cases, this asymptotic distribution coincides with the one in MPP.
Our notation is similar to MPP. Denote by Z; D; Y; Y�1; and U the (n� T )

observation matrices whose (i; t)th elements are zit; dit; yit; yit�1; and uit; re-
spectively. De�ne the T� vectors G0 = (1; ::::; 1)

0
; G1 = (0; 1; :::; T � 1)0 ; set

G = (G0; G1) = (g1; :::; gT )
0
; where gt = (1; t� 1)0 : De�ne �0 = (b01; ::::; b0n)

0
;

�1 = (b11; ::::; b1n)
0
; and � = (�0; �1) = (b1; :::; bn)

0
; where bi = (b0i; b1i)

0
: Let

Zi; Y i; Y �1;i; and U i denote the transpose of the i
th row of Z; Y; Y�1; and U;

respectively. With this notation, the model has the matrix form

Z = D + Y; Y = �Y�1 + U;

where � = diag (�1; :::; �n) :
De�ne �2i ; !

2
i ; and �i as the variance of uit; the long-run variance of uit

and the one-sided long-run variance of uit; respectively, so that !2i = �2i +
2�i. Let �; 
; and � be the diagonal matrices with elements �2i ; !

2
i ; and �i;

respectively. De�ne 
u;i = E
�
U iU

0
i

�
; the (T � T ) covariance matrix of U i; and


u = diag (
u;1; :::;
u;n) ; the (nT � nT ) covariance matrix of vec (U 0) : As in
MPP, we assume that the errors uit are cross section independent over i.
We assume that the localizing coe¢ cient �i in the local alternative (2) is a

sequence of iid random variables with bounded support.1 Let ��;k = E
�
�ki

�
;

�ci = 1�
ci
n�T ; and de�ne the quasi-di¤erence operator

�ci
(T�T )

=

266666664

1 0 : : : 0 0

��ci 1
. . .

...
...

0
. . .

. . . 0 0
... ��ci 1 0
0 : : : 0 ��ci 1

377777775
:

Set C = diag (c1; :::; cn) and �C = diag (�c1 ; :::;�cn) :
1As mentioned in MPP, the assumption of a bounded support for �i is made for convenience,

and could be relaxed at the cost of stronger moment conditions. It is also convenient to assume
that the �i are identically distributed, and this assumption could be relaxed as long as cross
sectional averages of the moments �i have well de�ned limits.
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The quasi log-likelihood function of the panel Z that we use in de�ning the
likelihood ratio test statistic has the form

LnT (C; D;B) = �
1

2
(vec (Z 0 �D0))

0
�0CB�C (vec (Z

0 �D0)) ;

for some weight matrix B:
Through the paper we will assume panel linear process errors with conditions

similar to those in the literature (e.g., Phillips and Moon, 1999).

Condition 1 (a) Assume uit =
P1

j=0 cijvit�j ; where vit � iid with E (vit) = 0
and E jvitj8+� <1 for some � > 0: Let cj = supi jcij j : (b) Assume

P1
j=0 j

mcj <
1 for some m > 1 Let fi (�) be the spectral density of uit. Let j (k) =R �
�� exp (ik) fj (�) d�,  (k) = supi ji (k)j ; �j (k) =

R �
�� exp (ik)

�
4�2fj (�)

��1
d�,

� (k) = supi j�i (k)j (c) Assume  (k) ; � (k) � Mk�s and for s > 2 and some
constant M:

2.1 No Fixed E¤ect: dit = 0

When dit = 0; the model becomes

Z = Y; Y = �Y�1 + U:

Following MPP, in this case we consider local neighborhoods of unity that shrink
at the rate of 1

n1=2T
; so that the rate coe¢ cient � = 1=2; and one-sided alterna-

tives in which the support of �i is a bounded interval [0;M�] for some M� � 0
so that �i � 1 under this alternative. In terms of the �rst moment of �i the
hypotheses about �i are as follows:

H0 : ��;1 = 0; (5)

and
H1 : ��;1 > 0: (6)

Suppose that uit are Gaussian so that vec (U 0) � N (0;
u) with known 
u
and the initial conditions yi0 are all zeros. By the Neyman-Pearson lemma,
rejecting a small value of the log-likelihood ratio test statistic

�2LnT
�
C; 0;
�1u

�
+ 2LnT

�
0; 0;
�1u

�
(7)

would be the uniformly most powerful test for the null �i = 1 for i = 1; :::; n
against the simple alternative �i = 1� ci

n1=2T
for i = 1; :::; n:When the alternative

is (4) with (6) ; this becomes a point optimal test.
In order to implement the optimal test statistic (7) ; one needs an estimate

of the entire (nT � nT ) covariance matrix 
u: This is a huge high dimensional
covariance estimation problem in a nonparametric set-up. The following theo-
rem provides an approximation of the likelihood ratio test statistic in (7) with
a statistic where the unknown nuisance parameters are consistently estimable.
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Theorem 2 Assume Condition 1 with vec (U 0) � N (0;
u). Assume that nT !
0 as n; T !1: Then, for �i = 1� �i

n1=2T
; we have

�2LnT
�
C; 0;
�1u

�
+ 2LnT

�
0; 0;
�1u

�
= �2LnT

�
C; 0;
�1 
 IT

�
+ 2LnT

�
0; 0;
�1 
 IT

�
� 2

n1=2
l0nC
�1�ln + op (1) :

Notice that the approximate likelihood ratio statistic

�2LnT
�
C; 0;
�1 
 IT

�
+ 2LnT

�
0; 0;
�1 
 IT

�
� 2

n1=2
l0nC
�1�ln (8)

in Theorem 2 employs the Gaussian log-likelihood based on the long-run vari-
ance 

IT with an adjustment of the one-sided long run variance 2

n1=2
l0nC
�1�ln:

The one-sided long run drift correction appears due to the correlation between
the stationary error uit and the lagged dependent variable zit�1 = yit�1: The
main advantage of this formulation is that it involves quantities (
 and �) that
can be easily estimated consistently.
The test statistic we propose is to use the approximated log likelihood ratio

(8) with appropriate centering. De�ne

VnT (C) = �2LnT
�
C; 0;
�1 
 IT

�
+2LnT

�
0; 0;
�1 
 IT

�
�1
2
�c;2�

2p
n
l0nC
�1�ln;

ln = (1; :::; 1) is the sum vector and �c;2 = E
�
c2i
�
.

Theorem 3 Let Condition 1 hold and n
T ! 0 as n; T ! 1: Then, under the

local alternative �i = 1� �i
n1=2T

, we have

VnT (C)) N
�
�E (ci�i) ; 2�c;2

�
;

where �c;2 = E
�
c2i
�
:

Remarks

1. One can interpret the test statistic VnT (C) as an asymptotic version of
the point optimal test for panel unit roots with possible serial correlation
of unknown form in the error term.

2. Compared to the corresponding statistic in MPP which makes no al-
lowance for serial correlation, there are two di¤erences in VnT (C) : First,
as discussed in MPP, we use an estimate of the long-run covariance matrix


 IT instead of an estimate of the variance matrix �
 IT as the weight
matrix. In addition, we recenter the statistic by subtracting the term
2p
n
l0nC
�1�ln; which corrects for the correlation between the stationary

error uit and the lagged dependent variable zit�1 = yit�1: This term is
not required for the test under temporal independence.

3. The limit distribution of VnT (C) is the same limit as in MPP (Theorem
6).
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2.2 Time Invariant Fixed E¤ects: dit = bi0
In this section we consider the case where the incidental trends dit = b0i are
�xed over time. This corresponds to the standard �xed e¤ects model. In this
case, the model has matrix form

Z = �0G
0
0 + Y; Y = �Y�1 + U:

As before, suppose that vec (U 0) � N (0;
u) with known 
u and the initial
conditions yi0 are all zeros. Then, rejecting a small value of the test statistic,

�2
�
min
�0
LnT

�
C; �0G00;
�1u

�
�min

�0
LnT

�
0; �0G

0
0;


�1
u

��
; (9)

for the null �i = 1 for i = 1; :::; n and the alternative �i = 1 � ci
n1=2T

for
i = 1; :::; n; is known as the uniformly most powerful invariant test that is
invariant with respect to the transformation Z ! Z + ��0G

0
0 for arbitrary �

�
0:

Against the alternative in (4) ; this becomes a point optimal invariant test (e.g.,
Dufour and King(1991)).
As mentioned in the previous section, this statistic is di¢ cult to implement

due to the presence of 
u; the full (nT � nT ) covariance matrix of the error.
This again motivates the use of an approximation.

Theorem 4 Assume Condition 1 with vec (U 0) � N (0;
u) and let n
T 1=2

! 0

as n; T !1: Then, for �i = 1� �i
n1=2T

; we have

�2
�
min
�0
LnT

�
C; �0G00;
�1u

�
�min

�0
LnT

�
0; �0G

0
0;


�1
u

��
= �2

�
min
�0
LnT

�
C; �0G00;
�1 
 IT

�
�min

�0
LnT

�
0; �0G

0
0;


�1 
 IT
��

� 2

n1=2
l0nC
�1�ln + op (1) :

Remarks

1. This approximation is derived under the stronger rate condition n
T 1=2

! 0
as n; T ! 1 in place of the condition n

T ! 0 as n; T ! 1 that is used
without �xed e¤ects.

2. The approximation involves the same correction for second-order bias as
in the case without �xed e¤ects.

Again, the test statistic we propose is the approximate log likelihood ratio
(8) with appropriate centering. De�ne

VnT;fe1 (C) = �2
�
min
�0
LnT

�
C; �0G00;
�1 
 IT

�
�min

�0
LnT

�
0; �0G

0
0;


�1 
 IT
��

�1
2
�c;2 �

2p
n
l0nC
�1�ln:
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Theorem 5 Assume Condition 1 holds and let n
T ! 0 as n; T ! 1: Then,

under the local alternative �i = 1� �i
n1=2T

, we have

VnT;fe1 (C)) N
�
�E (ci�i) ; 2�c;2

�
;

where �c;2 = E
�
c2i
�
:

This asymptotic distribution is the same as without �xed e¤ects and as in
MPP (Theorem 9).

2.3 Incidental Trends: dit = bi0 + bi1t

Under heterogeneous linear trends we follow MPP and use local neighborhoods
of unity that shrink at the slower rate of 1

n1=4T
; so that the rate coe¢ cient is

� = 1=4: The alternative may be two-sided, i.e. �i � iid with mean �� and
variance �2�; with a support that is a subset of a bounded interval [�Ml�; Mu�];
where Ml�; Mu� � 0: The slower rate of shrinkage in the local neighborhoods
of unity is the result of the presence of heterogeneous trend e¤ects in the panel.
The presence of these incidental trends reduces discriminatory power in testing
for the presence of common stochastic trends, so wider localizing intervals are
needed to attain non trivial power functions.
Under these conditions, hypotheses (3) and (4) can be re-expressed as

H0 : ��;2 = 0; (10)

and
H1 : ��;2 > 0: (11)

Again, suppose that vec (U 0) � N (0;
u) with known 
u and the initial
conditions yi0 are all zeros. Then, similar to the case of time invariant �xed
e¤ects, rejecting a small value of the test statistic,

�2
�
min
�
LnT

�
C; �G0;
�1u

�
�min

�
LnT

�
0; �G0;
�1u

��
;

for the null �i = 1 for i = 1; :::; n and the alternative �i = 1 � ci
n1=4T

for
i = 1; :::; n; is known as the uniformly most powerful invariant test (with respect
to the linear transformation Z ! Z + ��G0 for arbitrary ��), and against the
alternative in (4) ; it becomes a point optimal invariant test. As before, we start
by proving the validity of an approximation to this log-likelihood ratio.

Theorem 6 Assume Condition 1 with vec (U 0) � N (0;
u) and let n
T 1=4

! 0

as n; T !1: Then, for �i = 1� �i
n1=4T

; we have

�2
�
min
�
LnT

�
C; �G0;
�1u

�
�min

�
LnT

�
0; �G0;
�1u

��
= �2

�
min
�
LnT

�
C; �G0;
�1 
 IT

�
�min

�
LnT

�
0; �G0;
�1 
 IT

��
� 2

n1=4
l0nC
�1�ln + op (1) :
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Remarks

1. This approximation is derived under the condition n
T 1=4

! 0 as n; T !1;
which is a stronger rate condition than that used for the intercepts case.

2. As before, the correction is due to the presence of a second-order bias term
arising from the correlation between the lagged dependent variables and
the error term.

Again we propose is to use the approximate log likelihood ratio with appro-
priate centering as a test statistic. De�ne

VnT;fe2 (C) = �2
�
min
�
LnT

�
C; �G0;
�1 
 IT

�
�min

�
LnT

�
0; �G0;
�1 
 IT

��
+

1

n1=4
l0nC
�1�ln +

1

n1=2
�
l0nC2ln

�
!p2T +

1

n

�
l0nC4ln

�
!p4T ;

where

!p2T = � 1
T

TX
t=1

t

T
+
2

T

TX
t=1

�
t

T

�2
� 1
3
;

!p4T =
1

T 2

TX
t=1

TX
s=1

t

T

s

T
min

�
t

T
;
s

T

�
� 2
3

1

T

TX
t=1

�
t

T

�2
+
1

9
:

Theorem 7 Assume Condition 1 holds and let n
T ! 0 as n; T ! 1: Then,

under the local alternative �i = 1� �i
n1=4T

, we have

VnT;fe2 (C)) N

�
� 1

90
E
�
c2i �

2
i

�
;
1

45
E
�
c4i
��
:

As before, Vfe2;nT (C) reduces to the statistic from MPP when there is no
serial correlation, and it has the same asymptotic distribution as in Theorem
13 of MPP.

2.4 Implementation of the tests

The test statistics VnT (C) ; VnT;fe1 (C) ; and VnT;fe2 (C) depend on unknown
parameters

�
�2i
	
;
�
!2i
	
, and f�ig. Let �̂2i ; !̂2i ; and �̂i be consistent estimators

of �2i ; !
2
i ; and �i; respectively. Similarly de�ne the diagonal matrices of these

elements as �̂; 
̂; and �̂: To implement these tests, one may replace �; 
; and
� in VnT (C) ; VnT;fe1 (C) ; and VnT;fe2 (C) with �̂; 
̂; and �̂; and we denote the
test statistics as V̂nT (C) ; V̂nT;fe1 (C) ; and V̂nT;fe2 (C) :We assume the following
regarding these estimators.

Condition 8 supiE
�
�̂2i � �2i

�2
= o

�
1
n

�
; supiE

�
!̂2i � !2i

�2
= o

�
1
n

�
; and supiE

�
�̂
2

i � �2i
�2
=

o
�
1
n

�
under the local alternative.
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Remarks

1. An example of �̂2i that satis�es Condition 8 is the time series sample
variance of �zit :

�̂2i =
1

T � 1

TX
t=2

 
�zit �

 
1

T � 1

TX
t=2

zit

!!2
:

2. When kernel spectral density estimation is used for !̂2i and �̂
2

i with band-
width h; Condition 8 is satis�ed if: (i) the kernel functionK (�) : R! [0; 1]
is continuous at zero and all but a �nite number of other points, sat-
isfying K (0) = 1; K (x) = K (�x) ;

R1
�1K (x)

2
dx < M; and Kq =

limx!0 [1�K (x) = jxjq] < 1 for some 0 < q � m; where parameter m is
de�ned in Condition 1(b); and (ii) the bandwidth h satis�es

nh

T
+

n

h2q
= o (1) (12)

as nT ! 0 and h!1: (e.g., See Moon and Perron (2004)). If nT = o (T
�a)

for some 0 < a < 1 and q � 1
2

�
1�a
a

�
; then the bandwidth condition (12)

is satis�ed if
T

1
2q (1�a) . h . T a;

that is,
h

T a
;
T

1
2q (1�a)

h
= O (1) :

Theorem 9 Under Conditions 1 and 8, as n; T ! 1 with n
T ! 1; we have

V̂nT (C) = VnT (C)+op (1) ; V̂nT;fe1 (C) = VnT;fe1 (C)+op (1) ; and V̂nT;fe2 (C) =
VnT;fe2 (C) + op (1) under the local alternative.

3 Monte Carlo Simulations

This section reports the results of a small Monte Carlo experiment designed
to assess the �nite-sample properties of the tests presented above. For this
purpose, we use the same DGP as MPP but employ either an AR1) or MA(1)
process for the innovations so that the generating model has the following form:

zit = b0i + b1it+ yit;

yit = �iyit�1 + uit;

where the innovations follow either and AR(1) process:

uit = uit;t�1 + "it

"it s iid N
�
0; �2i

�
1� 2

��
9



or an MA(1) process

uit = '"it�1 + "it

"it s iid N

�
0; �2i

�
1

1 + '2

��
:

In both cases, we allow for heterogeneity and draw the idiosyncratic variance
�2i from a uniform distribution, �2i s U [0:5; 1:5] : This variance is scaled such
that the scale of uit is the same for all cases.
In both the incidental intercepts case (b1i = 0) and incidental trends case

(b1i 6= 0) ; the parameters are drawn from iidN (0; 1) :We focus the study on the
size of the common point-optimal test with ci = 1 for all i; as MPP advocated
that choice. This implies that we set �i = 1 for all i;which corresponds to �i = 0
for all i in our local-to-unity framework. We take three values for n (10; 25,
and 100) and two values of T (100 and 250). All tests are conducted at the 5%
signi�cance level, and the number of replications is set at 10,000.
Estimation of the long-run variance and one-sided long run variance is crit-

ical to the performance of the test. In all cases, we estimate these quantities
using a non-parametric estimator with quadratic spectral kernel and bandwidth
selected in a data-based manner using the Andrews (1991) rule with prewhiten-
ing. Because estimation of long-run variances is di¢ cult (especially in cases
with negative moving average components), we also report results that use the
unknown population values of !0is (but still estimate �

2
i from the data).

The results are reported in table 1. The table is divided in two panels. The
top panel reports the results for the incidental intercepts case, while the bottom
panel shows the results for the incidental trends case. Each cell has two entries:
the top entry reports rejections rates with estimated long-run variances, while
the bottom entry reports the rejection rates with population long-run variance.
With estimated long-run variances, size is well-controlled in most cases. In

fact, if anything, the test is generally conservative. The notable exception is in
the presence of moving average components. In those cases, size is well controlled
if we substitute the population long-run variances. Thus, the size distortions
that are noticed can be attributed to the estimation of these parameters. It can
also be noted that distortions get worse in the incidental trends case and as N
increases.

4 Conclusion

This paper develops generalizations of the point-optimal panel unit root tests
of Moon, Perron, and Phillips (2007) to cover the case where the error term
is serially correlated. The resulting statistics have two simple modi�cations
relative to those in MPP. First, the variance of the errors is replaced by the long-
run variance. Second, the centering of the statistic is adjusted to accommodate
the second-order bias induced by the correlation between the error and lagged
values of the dependent variable. Simulations show that these two adjustments
lead to appropriately sized tests in most cases.
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Another approach to dealing with serial dependence is to use the trend likeli-
hood approach of Phillips (2011), which produces an alternative approximation
for the implied likelihood based on a sieve approximation to the nonstationary
components using an orthogonal series of trend basis functions. The idea of the
trend likelihood approach is to project the observations on the sieve space and
construct the likelihood and likelihood ratio statistic for the transformed obser-
vations using series based estimates of the long run variances (Phillips, 2005).
This approach will be explored in later work.
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Appendix
The appendix consists of three sections. In the �rst section we provide

proofs of Theorems 2, 4, and 6 that approximate the Gaussian log-likelihood
ratio statistic. In the second section we provide sketches of the proofs of the
limit distribution results in Theorems 3, 5, and 7. In the third section, we pro-
vide a heuristic proof of Theorem 9. We only provide sketches of the proofs in
the last two sections because the details are similar to those of the correspond-
ing theorems in MPP and can be established with only minor modi�cations.
Throughout the appendix, M denotes a generic (�nite) constant.

5 Proofs of the Approximations in Theorems 2,
4, and 6

5.1 Proof of Theorem 2

Here � = 1=2: Assume Condition 1 and n
T ! 0: Since �Y i = � �i

n�T Y �1;i + U i;
we can write

�2LnT
�
C; 0;
�1u

�
+ 2LnT

�
0; 0;
�1u

�
=

nX
i=1

��
�Y i +

ci
n�T

Y �1;i

�0

�1u;i

�
�Y i +

ci
n�T

Y �1;i

�
� (�Y i)

0

�1u;i (�Y i)

�

=
2

n�T

nX
i=1

ciY
0
�1;i


�1
u;i�Y i +

1

n2�T 2

nX
i=1

c2iY
0
�1;i


�1
u;iY �1;i: (13)

Write

2

n�T

nX
i=1

ciY
0
�1;i


�1
u;i�Y i =

1

n�

nX
i=1

ci

�
2

T
Y 0�1;i


�1
u;i�Y i

�

=
1

n�

nX
i=1

ci

"
2

T

Y 0�1;i�Y i
!2i

+
�2i
!2i
� 1
#
+
1

n�

nX
i=1

�iT

=
2

n�T

nX
i=1

ci
!2i
Y 0�1;i�Y i �

2

n�

nX
i=1

ci
�i
!2i
+
1

n�

nX
i=1

�1iT ; (14)

where

�1iT = 2ci

"
1

T
Y 0�1;i


�1
u;i�Y i �

1

T

Y 0�1;i�Y i
!2i

+
�i
!2i

#
;

and

1

n2�T 2

nX
i=1

c2iY
0
�1;i


�1
u;iY �1;i =

1

n2�T 2

nX
i=1

c2i
!2i
Y 0�1;iY �1;i +

1

n2�

nX
i=1

�2iT ; (15)

12



where

�2iT = c
2
i

�
1

T 2
Y 0�1;i


�1
u;iY �1;i �

1

!2iT
2
Y 0�1;iY �1;i

�
:

In the following subsections we show that under Condition 1, as n
T ! 0;

1

n1=4

nX
i=1

�1iT = op (1) (16)

1

n1=2

nX
i=1

�2iT = op (1) : (17)

Then, by (13)� (17) with � = 1=2; we deduce that

�2LnT
�
C; 0;
�1u

�
+ 2LnT

�
0; 0;
�1u

�
= � 2

n1=2T

nX
i=1

ci
!2i
Y 0�1;i�Y i +

1

nT 2

nX
i=1

ci
!2i
Y 0�1;iY �1;i �

2

n1=2

nX
i=1

ci
�i
!2i
+ op (1)

= �2LnT (C; 0;

 IT ) + 2LnT (0; 0;

 IT )�
2p
n
l0nC
�1�ln + op (1) ;

as required. �

5.2 Proof of Theorem 4

Here � = 1=2: Assume Condition 1 and n
T 1=2

! 0. By de�nition, we have

�2
�
min
�0
LnT

�
C; �0G00;
�1u

�
�min

�0
LnT

�
0; �0G

0
0;


�1
u

��
=

nX
i=1

�
(�ciY i)

0

�1u;i (�ciY i)� (�Y i)

0

�1u;i (�Y i)

�
�

nX
i=1

"
(�ciY i)

0

�1u;i (�ciG0)

�
(�ciG0)

0

�1u;i (�ciG0)

��1
(�ciG0)

0

�1u;i (�ciY i)

� (�Y i)
0

�1u;i (�G0)

�
(�G0)

0

�1u;i (�G0)

��1
(�G0)

0

�1u;i (�Y i)

#
:

By (14) ; (15) ; (16) ; and (17) we can approximate the �rst term as

nX
i=1

�
(�ciY i)

0

�1u;i (�ciY i)� (�Y i)

0

�1u;i (�Y i)

�
=

nX
i=1

1

!2i

�
(�ciY i)

0
(�ciY i)� (�Y i)

0
(�Y i)

�
� 2

n1=2

nX
i=1

ci
�i
!2i
+ op (1) :
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Then, the required result for the theorem follows since
nX
i=1

(�ciY i)
0

�1u;i (�ciG0)

�
(�ciG0)

0

�1u;i (�ciG0)

��1
(�ciG0)

0

�1u;i (�ciY i)

�
nX
i=1

1

!2i
(�ciY i)

0
(�ciG0)

�
(�ciG0)

0
(�ciG0)

��1
(�ciG0)

0
(�ciY i)

= op (1) (18)

for any ci such that supi jcij < M for some constant M: The proof of (18) is
available in the following subsection. �

5.3 Proof of Theorem 6

Here � = 1=4: Assume Condition 1 and n
T 1=4

! 0. By de�nition, we have

�2
�
min
�
LnT

�
C; �G0;
�1u

�
�min

�
LnT

�
0; �G0;
�1u

��
=

nX
i=1

�
(�ciY i)

0

�1u;i (�ciY i)� (�Y i)

0

�1u;i (�Y i)

�
�

nX
i=1

"
(�ciY i)

0

�1u;i (�ciG)

�
(�ciG)

0

�1u;i (�ciG)

��1
(�ciG)

0

�1u;i (�ciY i)

� (�Y i)
0

�1u;i (�G)

�
(�G)

0

�1u;i (�G)

��1
(�G)

0

�1u;i (�Y i)

#
:

By (14) ; (15) ; (16) ; and (17) ; we can approximate the �rst term as

nX
i=1

�
(�ciY i)

0

�1u;i (�ciY i)� (�Y i)

0

�1u;i (�Y i)

�
=

nX
i=1

1

!2i

�
(�ciY i)

0
(�ciY i)� (�Y i)

0
(�Y i)

�
� 2

n1=4

nX
i=1

ci
�i
!2i
+ op (1) :

Also, in the following subsection we show that
nX
i=1

(�ciY i)
0

�1u;i (�ciG)

�
(�ciG)

0

�1u;i (�ciG)

��1
(�ciG)

0

�1u;i (�ciY i)

�
nX
i=1

1

!2i
(�ciY i)

0
(�ciG)

�
(�ciG)

0
(�ciG)

��1
(�ciG)

0
(�ciY i)

= op (1) (19)

for any ci such that supi jcij < M for some constant M: Then, we have

nX
i=1

"
(�ciY i)

0

�1u;i (�ciG)

�
(�ciG)

0

�1u;i (�ciG)

��1
(�ciG)

0

�1u;i (�ciY i)

� (�Y i)
0

�1u;i (�G)

�
(�G)

0

�1u;i (�G)

��1
(�G)

0

�1u;i (�Y i)

#

=

nX
i=1

1

!2i

"
(�ciY i)

0
(�ciG)

�
(�ciG)

0
(�ciG)

��1
(�ciG)

0
(�ciY i)

� (�Y i)
0
(�G)

�
(�G)

0
(�G)

��1
(�G)

0
(�Y i)

#
+ op (1) :
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Combining these expressions gives the required result

�2
�
min
�
LnT

�
C; �G0;
�1u

�
�min

�
LnT

�
0; �G0;
�1u

��
= �2

�
min
�
LnT

�
C; �G0;
�1 
 IT

�
�min

�
LnT

�
0; �G0;
�1 
 IT

��
� 2

n1=4
l0nC
�1�ln + op (1) : �

5.4 Supplementary Results

5.4.1 A Useful Lemma

Before we start the proof of (16) and (17) ; we introduce a useful technical result.
When A is a matrix, we use three di¤erent norms, kAko = �max (A

0A)
1=2
;

where �max (�) denotes the maximum eigenvalue, kAk = tr (A0A)1=2 ; and jAj =P
i;j jaij j ; where aij is the (i; j)

th element of A: It is well known that

kAko � kAk � jAj :

By de�nition, the covariance matrix of U i is 
u;i = [i (t� s)]t;s : Let Ai be
the (T � T ) matrix whose (t; s) element ai;t;s is �t�s�1i ; if t > s; and zero, if
t � s: Let

Ri = !i

�1=2
u;i � !�1i 


1=2
u;i : (20)

Lemma 10 Assume Condition 1. Then supi
1

T 1=2
kRiAik < M for some con-

stant M:

Proof. For the desired result, we show

sup
i

1

T
kRiAik2 �M:

By de�nition,

sup
i

1

T
kRiAik2 = sup

i

1

T
tr (A0iR

0
iRiAi) = sup

i

1

T
tr
�
!2iA

0
i


�1
u;iAi + !

�2
i A0i
u;iAi � 2A0iAi

�
� M sup

i

���� 1T tr �A0i �
u;i � !2i �Ai�
����+M sup

i

���� 1T tr �A0i �
�1u;i � !�2i �Ai�
����

= M (I + II) ; say,

where the inequality holds since 0 < infi !2i � supi !2i < 1 under Condition 1
and by the triangle inequality.
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First we show that I = O (1) : De�ne

an;T;i (k) =
1

T

T�kX
t=1

TX
s=1

ai;t;sai;t+k;s =

�
1� �i

n�T

�k T�kX
s=1

�
1� �i

n�T

�2(s�1)�
t� k � s

T

�

a0n;T;i (k) =
T�kX
s=1

�
1� �i

n�T

�2(s�1)�
t� k � s

T

�

a00n;T;i (k) =
TX
s=1

�
1� �i

n�T

�2(s�1)�
t� k � s

T

�

an;T;i (0) =
1

T

 
TX
t=1

ai;t;s

!2
=

TX
s=1

�
1� �i

n�T

�2(s�1)�
t� s
T

�
:

By adding and subtracting the terms and the triangle inequality, we can bound

I = sup
i

���� 1T tr �A0i �
u;i � !2i �Ai�
����

� I1 + I2 + I3 + I4;

where

I1 = sup
i
2

�����
T�1X
k=1

i (k)
�
an;T;i (k)� a0n;T;i (k)

������
I2 = sup

i
2

�����
T�1X
k=1

i (k)
�
a0n;T;i (k)� a00n;T;i (k)

������
I3 = sup

i
2

�����
T�1X
k=1

i (k)
�
a00n;T;i (k)� an;T;i (0)

������
I4 = sup

i
2

�����an;T;i (0)
1X
k=T

i (k)

����� :
For term I1; note that since supi

��� 1T PT�k
s=1

�
1� �i

n�T

�2(s�1) � t�k�s
T

���� < M and

16



supi j�ij < M; we have���an;T;i (k)� a0n;T;i (k)���
= T

�����
�
1� �i

n�T

�k
� 1
�����
����� 1T

T�kX
s=1

�
1� �i

n�T

�2(s�1)�
t� k � s

T

������
� MT

�����
�
1� �i

n�T

�k
� 1
����� =MT

������
kX
j=1

�
k

j

��
��i
n�T

�j������
� MT

kX
j=1

1

j!

�
j�ij k
n�T

�j
=MT

j�ij k
n�T

kX
j=1

1

j!

�
j�ij k
n�T

�j�1

� M
k

n�

0@1 + 1X
j=1

1

j!

�
M

n�

�j1A =M
k

n�
exp

�
M

n�

�
;

where the second inequality uses
�
k
j

�
� kj

j! ; the last inequality uses supi j�ij < M
and k

T � 1; and the equality uses the Taylor representatoin of the exponential
function. Then,

I1 � 2
T�1X
k=1

 (k) sup
i

���an;T;i (k)� a0n;T;i (k)��� � M

n�

�
exp

�
M

n�

�
� 1
� T�1X
k=1

 (k) k = o (1) :

For term I2; notice that���a0n;T;i (k)� a00n;T;i (k)���
� 2T

1

T

TX
s=T�k+1

�
1 +

j�ij
n�T

�2(s�1)

� 2T

Z 1

1� k
T

exp

�
2 j�ij r
n�

�
dr

=

(
T n�

j�ij exp
�
2j�ij
n�

� h
1� exp

�
� 2j�ij

n�
k
T

�i
for �i 6= 0

2k for �i = 0

� Mk;

where the �rst inequality holds since �i � 0 and
�� t�k�s

T

�� � 2 and the last
inequality holds by the mean-value theorem and supi j�ij < M: Then,

I2 = sup
i
2

�����
T�1X
k=1

i (k)
�
a0n;T;i (k)� a00n;T;i (k)

������ �M
T�1X
k=1

 (k) k = O (1) :
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For term I3; we have

I3 = sup
i
2

�����
T�1X
k=1

i (k)
�
a00n;T;i (k)� an;T;i (0)

������
� 2

T�1X
k=1

 (k) k sup
i

����� 1T
TX
s=1

�
1� �i

n�T

�2(s�1)����� = O (1) ;
the last line holds since supi

��� 1T PT
s=1

�
1� �i

n�T

�2(s�1)��� < M: Finally, we have
I4 = sup

i
2

�����an;T;i (0)
1X
k=T

i (k)

�����
� sup

i

����� 1T
TX
s=1

�
1� �i

n�T

�2(s�1)�
t� s
T

������T
1X
k=T

 (k)

� MT

1X
k=T

k�s �M
1X
k=T

k�s+1 = o (1) ;

where the second inequality holds since supi
��� 1T PT

s=1

�
1� �i

n�T

�2(s�1) � t�s
T

���� <
M: By combining terms I1 � I4; we have the required result

I = O (1) :

The proof of II = O (1) follows in a similar fashion and is omitted.

5.4.2 Proof of (17)

We prove the required result when n
T ! 0 and � = 1=4: Since

E

 
1

n1=2

nX
i=1

�2iT

!2
=

 
1

n1=2

nX
i=1

E (�2iT )

!2
+ V ar

 
1

n1=2

nX
i=1

�2iT

!

�
�
n1=2 sup

i
jE (�2iT )j

�2
+ sup

i
V ar (�2iT ) ;

the required result follows if we show

n1=2 sup
i
jE�2iT j = o (1) (21)

and
sup
i
V ar (�2iT ) = o (1) : (22)

For (21) ; we follow similar arguments used in proving jE (S1)j ! 0 on page
831 (in the proof of Lemma A2) of ERS, and have for some constant M

n1=2 sup
i
jE�2iT j �

� n
T

�1=2
M sup

i

�
1

!i
k
u;iko


�1u;i1=2o

kRiAikp
T

�
�M

� n
T

�1=2
= o (1) ;
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where the second inequality holds since 0 < Ml � infi fi (�) � supi fi (�) �
Mu <1 and by Lemma 10, and the last inequality holds since n

T ! 0:
For (22) ; we also follow similar arguments to those used in proving jV ar (S1)j !

0 on page 831 (in the proof of Lemma A2) of ERS, and have for some constant
M

sup
i
V ar (�2iT ) �

1

T
M sup

i

 
1

!2i
k
u;ik2o


�1u;io kRiAik2T

!
� M

T
= o (1) : �

5.4.3 Proof of (16)

We prove the required result when n
T ! 0 and � = 1=4: By replacing �Y i in

�1iT with � �i
n1=4T

Y �1;i + U i; we can decompose �1iT as

�1iT = �3iT �
1

n1=4
�4iT ;

where

�3iT = 2ci

"
1

T
Y 0�1;i


�1
u;iU i �

1

T

Y 0�1;iU i
!2i

+
�i
!2i

#

�4iT = ci�i

"
1

T 2
Y 0�1;i


�1
u;iY �1;i �

1

T

Y 0�1;iY �1;i
!2i

#
;

and
1

n1=4

nX
i=1

�1iT =
1

n1=4

nX
i=1

�3iT �
1

n1=2

nX
i=1

�4iT :

First, similar arguments to those in the proof of (17) lead to

1

n1=2

nX
i=1

�4iT = op (1) :

Then, the required result follows if

1

n1=4

nX
i=1

�3iT = op (1) ;

which follows if

E

 
1

n1=4

nX
i=1

�3iT

!2
= o (1) :

Notice that

E

 
1

n1=4

nX
i=1

�3iT

!2
=

 
1

n1=4

nX
i=1

E (�3iT )

!2
+ V ar

 
1

n1=4

nX
i=1

�3iT

!

�
�
n3=4 sup

i
jE (�3iT )j

�2
+ n1=2 sup

i
V ar (�3iT ) ;
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By similar arguments to those used for the proof of supi V ar (�2iT ) = O
�
1
T

�
;

we can show that

n1=2 sup
i
V ar (�3iT ) = n

1=2O

�
1

T

�
= o (1) :

For n3=4 supi jE (�3iT )j = o (1) ; we show

sup
i
jE (�3iT )j = O

�
1

T

�
: (23)

Since n
T ! 0, the desired result follows. Since Y �1;i = AiU i; we have

�3iT = 2ci

�
1

T
A0iU

0
i


�1
u;iU i �

1

T

A0iU
0
iU i

!2i
+
�i
!2i

�
:

Since tr (Ai) = 0; we have

E (�3iT ) = 2ci
1

T

�
tr (Ai)�

1

!2i
tr (
u;iAi)

�
+ 2ci

�i
!2i

=
�2ci
!2i

"
TX
k=1

i (k)

�
1� k

T

�
�k�1i �

1X
k=1

i (k)

#

=
�2ci
!2i

"
TX
k=1

i (k)
�
�k�1i � 1

�
� 1

T

TX
k=1

ki (k) �
k�1
i �

1X
k=T+1

i (k)

#
= I + II + III; say.

For term I; we can bound

0 �
��1� �k�1i

�� = �����1�
�
1� �i

n�T

�k�1����� �
k�1X
j=1

�
k � 1
j

��
j�ij
n�T

�j

�
k�1X
j=1

1

j!

�
j�ij (k � 1)
n�T

�j
=
j�ij (k � 1)
n�T

k�1X
j=1

1

j!

�
j�ij (k � 1)
n�T

�j�1

� M (k � 1)
n�T

k�1X
j=1

1

j!

�
M

n�

�j�1
� M (k � 1)

n�T

0@1 + 1X
j=1

1

j!

�
M

n�

�j1A
� M (k � 1)

n�T

�
exp

�
M

n�

��
:

Then, for some constant M > 0; we can bound

jIj = sup
i

2ci
!2i

TX
k=1

ji (k)j
���1� �k�1i

��� � M

n�T

�
exp

�
M

n�

�� TX
k=1

 (k) k = o

�
1

T

�
;
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as required. Next,

jIIj � M

T

TX
k=1

k (k) = O

�
1

T

�
;

and

jIIIj � M
1X

k=T+1

 (k) �M
1X

k=T+1

k�s by Condition (iii)

� M (T + 1)
�s+1

= o

�
1

T

�
since s > 2;

as required. �

5.4.4 More Preliminary Results

In this section � = 1=4 and we assume Condition 1: De�ne �i to the (T � T )
matrix whose (r; s)th element is �i (r � s) ; where �i (k) is de�ned in Condition
1.
De�ne ~G =

h
~G0; ~G1

i
= [G0; G1]

�
diag

�p
T ; 1

��
: Direct calculations show

that

�ci
~G0 =

�
T 1=2;

ci
n1=4T 1=2

; :::;
ci

n1=4T 1=2

�0
;

�ci
~G1 =

�
0; 1 +

ci
n1=4

1

T
; :::; 1 +

ci
n1=4

t� 1
T

; :::; 1 +
ci
n1=4

T � 1
T

�0
;

1

T

�
�ci

~G
�0 �

�ci
~G
�

=

0@ 1 +
c2i

n1=2T
T�1
T

1
T 1=2

�
ci
n1=4

+
c2i
n1=2

1
T

PT
t=2

t�1
T

�
1

T 1=2

�
ci
n1=4

+
c2i
n1=2

1
T

PT
t=2

t�1
T

�
1
T

PT
t=2

�
1 + ci

n1=4
t�1
T

�2
1A ;

and

1

T 1=2

�
�ci

~G
�0
(�ciY i)

=

 
yi1 +

ci
n1=4T 1=2

1
T 1=2

(yiT � yi1) + c2i
n1=2T 1=2

1
T 3=2

PT
t=2 yit�1

1
T 1=2

(yiT � yi1) + ci
n1=4T 1=2

�
yiT � 1

T (yiT + yi0)
�
+

c2i
n1=2

1
T 3=2

PT
t=2

t�1
T yit�1

!
(24)

De�ne

bjln;T;i (k) =
1

T

T�kX
t=2

��
�ci

~Gj

�
t

�
�ci

~Gl

�
t+k

+
�
�ci

~Gl

�
t

�
�ci

~Gj

�
t+k

�
;

where (x)t is the t
th element of the vector x and j; l = 0; 1:

Lemma 11 (a) supi
��b01n;T;i (k)�� � M

T 1=2
for all k. (b) supi

��b11n;T;i (k)� b11n;T;i (0)�� �
M k

T for some �nite constant M:
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Proof. Part (a): By de�nition, for k = 0;

sup
i

��b01n;T;i (0)�� = 2 sup
i

���� 1T ��ci ~G0�0 ��ci ~G1�
���� = 2

T 1=2
sup
i

����� cin1=4 + c2i
n1=2

1

T

TX
t=2

t� 1
T

����� � M

n1=4T 1=2
:

For k � 1; we have

sup
i

��b01n;T;i (k)�� = sup
i

����� 1T
T�kX
t=2

��
�ci

~G0

�
t

�
�ci

~G1

�
t+k

+
�
�ci

~G1

�
t

�
�ci

~G0

�
t+k

������ � M

T 1=2
;

as required. �
Part (b): By de�nition,

sup
i

��b11n;T;i (k)� b11n;T;i (0)��
� 2

1

T

T�kX
t=2

�����
�
1 +

ci
n1=4T

t� 1
T

��
1 +

ci
n1=4T

t+ k � 1
T

�
�
�
1 +

ci
n1=4T

t� 1
T

�2�����
+2

1

T

TX
t=T�k+1

�
1 +

ci
n1=4T

t� 1
T

�2
� M

n1=4
k

T
+M

k

T
;

as required.

Lemma 12 (a) Suppose that xi and zi are T� vectors such that supi;t jzitj is
bounded, where zit is the tth element of zi: Then, supi

�� 1
T x

0
i

�

�1u;i � �i

�
zi
�� =

O
�
supikxik

T

�
: (b) supi

1
T

Ri ��ci ~G1�2 = O
�

1
T 1=2

�
; where Ri is de�ned in

(20) :

Proof. Part (a): The proof is similar to that of Lemma A1 of ERS and is
omitted. �
Part (b): We replace Ai in the proof of Lemma 10 with

�
�ci

~G1

�
: Then,

the required result follows if we show

(b1): sup
i

���� 1T ��ci ~G1�0 �
u;i � !2i � ��ci ~G1�
���� = O� 1T

�
(b2): sup

i

���� 1T ��ci ~G1�0 �
�1u;i � !�2i � ��ci ~G1�
���� = O� 1

T 1=2

�
:
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For Part (b1), by de�nition, we have

sup
i

���� 1T ��ci ~G1�0 �
u;i � !2i � ��ci ~G1�0
����

= sup
i

�����
T�1X
k=1

i (k)
�
b11n;T;i (k)� b11n;T;i (0)

�
�
 1X
k=T

i (k)

!
b11n;T;i (0)

�����
� sup

i

�����
T�1X
k=1

i (k)
�
b11n;T;i (k)� b11n;T;i (0)

������+ supi
�����
 1X
k=T

i (k)

!
b11n;T;i (0)

����� :
By by Lemma 11(b), the �rst term is bounded by

T�1X
k=1

 (k) sup
i

��b11n;T;i (k)� b11n;T;i (0)�� �M 1

T

T�1X
k=1

 (k) k = O

�
1

T

�
;

as required. Under Condition 1(iii), the second term is bounded by 1X
k=T

k�s

!
sup
i

��b11n;T;i (0)�� � o� 1T
�
;

as required.
For Part (b2), we have

sup
i

���� 1T ��ci ~G1�0 �
�1u;i � !�2i � ��ci ~G1�
����

� sup
i

���� 1T ��ci ~G1�0 �
�1u;i � �i� ��ci ~G1�
����+ sup

i

���� 1T ��ci ~G1�0 ��i � !�2i � ��ci ~G1�
���� :

By Part (a), we have

sup
i

���� 1T ��ci ~G1�0 �
�1u;i � �i� ��ci ~G1�
���� � O

0@sup
i

�ci ~G1
T

1A = O

�
1

T 1=2

�
:

Using similar argument used in the proof of Part (b1), we can bound the second
term by

sup
i

���� 1T ��ci ~G1�0 ��i � !�2i � ��ci ~G1�
���� � O� 1T

�
:

Combining these, we have the required result for Part (b2).

For C = diag (c1; :::; cn) ; we de�ne

AiT (C) =
1

T 1=2

�
�ci

~G
�0

�1u;i (�ciY i) ; A

�
iT (C) =

1

!2i

1

T 1=2

�
�ci

~G
�0
(�ciY i)

BiT (C) =
1

T

�
�ci

~G
�0

�1u;i

�
�ci

~G
�
; B�iT (C) =

1

!2i

1

T
(�ciG)

0
(�ciG) ;

~BiT (C) = diag (B11;iT (C) ; B22;iT (C)) ; ~B�iT (C) = diag
�
B�11;iT (C) ; B�22;iT (C)

�
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and we will de�ne Bkl;iT (C) to the (k; l)th element of BiT (C) and Ak;iT (C) to
be the kth element of Ak;iT (C) ; where k; l = 1; 2: Similarly we de�ne A�k;iT (C)
and B�kl;iT (C) :

Lemma 13 Under Conditions 1, the following hold.
(a) supi jB12;iT (C)j ; supi

��B�12;iT (C)�� = O � 1
T 1=2

�
:

(b) supi
BiT (C)� ~BiT (C)

 ; supi B�iT (C)� ~B�iT (C)
 = O � 1

T 1=2

�
:

(c) supi
BiT (C)�1 ; supi  ~BiT (C)�1 �M:

(d) supiE kAiT (C)k
2
; supiE kA�iT (C)k

2 �M:
(e) supi jB11;iT (C)�B11;iT (0)j = O

�
1

n1=4T 1=2

�
:

(f) supi
��B22;iT (C)�B�22;iT (C)�� = O � 1

T 1=2

�
:

(g) supiE
��A2;iT (C)�A�2;iT (C)��2 = O � 1

T 1=2

�
:

Proof. Part (a): A direct calculation shows that supi
��B�12;iT (C)�� = O � 1

T 1=2

�
:

We bound supi jB12;iT (C)j by

sup
i
jB12;iT (C)j = sup

i

���� 1T ��ci ~G0�0 
�1u;i ��ci ~G1�
����

� sup
i

���� 1T ��ci ~G0�0 �
�1u;i � �i� ��ci ~G1�
����+ sup

i

���� 1T ��ci ~G0�0
�
�i �

1

!2i

��
�ci

~G1

�����
+sup

i

���� 1T 1

!2i

�
�ci

~G0

�0 �
�ci

~G1

����� :
By Lemma 12(a), we have

sup
i

���� 1T ��ci ~G0�0 �
�1u;i � �i� ��ci ~G1�
���� = O

0@sup
i

�ci ~G0
T

1A = O

�
1

T 1=2

�
:

By Lemma 11 and Condition 1, we have

sup
i

���� 1T ��ci ~G0�0
�
�i �

1

!2i

��
�ci

~G1

����� = O� 1

T 1=2

�
:

Finally, the last term is

sup
i

���� 1T 1

!2i

�
�ci

~G0

�0 �
�ci

~G1

����� = sup
i

��B�12;iT (C)�� = O� 1

T 1=2

�
;

as required. �
Part (b) is an immediate corollary of Part (a). �
Part (c): First notice that under Condition 1 we have

0 < Ml � inf
i
Bkk;iT (C) =

 1T ��ci ~Gk�1�
2 1

supi �max (
u;i)

� Bkk;iT (C) � sup
i
Bkk;iT (C) =

 1T ��ci ~Gk�1�
2 1

infi �min (
u;i)
�Mu <1;
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where k = 1; 2: It follows immediately that

sup
i

 ~BiT (C)�1 � 1

infiB11;iT (C)
+

1

infiB22;iT (C)
�M;

as required. Also, the desired result follows since

sup
i

BiT (C)�1 = sup
i

 1

det (BiT (C))

�
B22;iT (C) �B12;iT (C)
�B12;iT (C) B11;iT (C)

�
� supi kBiT (C)k

infiB11;iT (C) infiB22;iT (C)� supiB12;iT (C)
2

=
supi

 ~BiT (C)+ o (1)
infiB11;iT (C) infiB22;iT (C) + o (1)

�M;

where the second equality holds by Part (a). �
Part (d): The desired result supiE kA�iT (C)k

2 � M follows from (24) and
by direct calculation. For the second desired result, notice that E kAiT (C)k2 =
E kA1;iT (C)k2+E kA2;iT (C)k2 : First, supiE kA2;iT (C)k

2 �M since E kA2;iT (C)k2 �
2E
A�2;iT (C)2+2E A2;iT (C)�A�2;iT (C)2 �M by supiE kA�iT (C)k

2 �M
and by Part (g) which we prove later. Next, by de�nition,

A1;iT (C) =
1

T 1=2

�
�ci

~G0

�0

�1u;i (�ciY i)

=
(ci � �i)
n1=4

1

T 3=2

�
�ci

~G0

�0

�1u;iY �1;i +

1

T 1=2

�
�ci

~G0

�0

�1u;iU i

= Ii + IIi; say.

Since Y �1;i = AiU i; where Ai is de�ned above Lemma 10, we have

sup
i
E
�
I2i
�
= sup

i
E

 
(ci � �i)2

n1=2!2i

1

T 3

�
�ci

~G0

�0

�1u;iAi
u;iAi


�1
u;i

�
�ci

~G0

�!

� M
1

n1=2

0@sup
i

�ci ~G0T 1=2


2
1A sup

i

AiT
2
!�

sup
i


�1u;i2o
��

sup
i
k
u;iko

�

= O

�
1

n1=2

�
= o (1) ;

and

sup
i
E
�
II2i
�
= sup

i

1

T

�
�ci

~G0

�0

�1u;i

�
�ci

~G0

�
�

0@sup
i

�ci ~G0T 1=2


2
1A�sup

i


�1u;io
�
= O (1) :
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Therefore, we have
sup
i
E
A�1;iT (C)2 �M;

as required. �
Part (e): Notice that

B11;iT (C)�B11;iT (0)

=
1

T

�
�ci

~G0 �� ~G0
�0

�1u;i

�
�ci

~G0 �� ~G0
�
� 2

T

�
�ci

~G0 �� ~G0
�0

�1u;i

�
� ~G0

�
:

The required result follows since

sup
i
jB11;iT (C)�B11;iT (0)j

� 1

T

�
sup
i

�ci ~G0 �� ~G02��sup
i


�1u;io
�
+
2

T

�
sup
i

�ci ~G0 �� ~G0��sup
i


�1u;io
�� ~G0

=
1

T
O

�
1

n1=2

�
O (1) +

1

T
O

�
1

n1=4

�
O (1)O

�
T 1=2

�
= O

�
1

n1=4T 1=2

�
;

as required. �
Part (f) follows by Lemma 12b(2). �
Part (g): By de�nition, we have

A2;iT (C)�A�2;iT (C)

=
(ci � �i)
n1=4

1

T 3=2

�
�ci

~G1

�0�

�1u;i �

1

!2i

�
Y �1;i +

1

T 1=2

�
�ci

~G1

�0�

�1u;i �

1

!2i

�
U i

=
(ci � �i)
n1=4!i

1

T 3=2

��
�ci

~G1

�0
Ri

�


�1=2
u;i AiU i +

1

!iT 1=2

��
�ci

~G1

�0
Ri

�


�1=2
u;i U i

= Ii + IIi; say,

where the second equality holds since Y �1;i = AiU i; where Ai is de�ned above
Lemma 10, and Ri is de�ned in (20) :

sup
i
E
�
I2i
�
= sup

i
E

 
(ci � �i)2

n1=2!2i

1

T 3

��
�ci

~G1

�0
Ri

�


�1=2
u;i Ai
u;iAi


�1=2
u;i

�
R0i

�
�ci

~G1

��!

� M
1

n1=2

 
sup
i

1

T

��ci ~G1�0Ri2
! 

sup
i

AiT
2
!�

sup
i


�1u;io
��

sup
i
k
u;iko

�
= O

�
1

n1=2T 1=2

�
;

and

sup
i
E
�
II2i
�
= sup

i

1

!2i
sup
i

1

T

��ci ~G1�0Ri2 = O� 1

T 1=2

�
:

Combining the bounds of supiE
�
I2i
�
and supiE

�
II2i
�
; we have the desired

result for Part (g).
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5.5 Proof of (18)

The required result follows if we show

nX
i=1

h
A1;iT (C)2B11;iT (C)�1 �A1;iT (0)2B11;iT (0)�1

i
= op (1) ;

nX
i=1

h
A�1;iT (C)

2
B�11;iT (C)

�1 �A�1;iT (0)
2
B�11;iT (0)

�1
i
= op (1) :

Notice that�����
nX
i=1

h
A1;iT (C)2B11;iT (C)�1 �A1;iT (0)2B11;iT (0)�1

i�����
�

nX
i=1

���A1;iT (C)2 �B11;iT (C)�1 �B11;iT (0)�1����+ nX
i=1

���A1;iT (C)2 �A1;iT (0)2���B11;iT (0)�1 :
The �rst term is bounded by

n

�
sup
i
B11;iT (C)�1

��
sup
i
B11;iT (0)

�1
�
sup
i
jB11;iT (C)�B11;iT (0)j

 
1

n

nX
i=1

A1;iT (C)2
!

= nO (1)O (1)O

�
1

n1=4T 1=2

�
Op (1) = Op

�
n3=4

T 1=2

�
= op (1) ;

where the �rst equality holds by Lemma 13(c),(d), and (e) and the last equality
holds since n

T 1=2
= o (1). The second term is bounded by

n

 
1

n

nX
i=1

(A1;iT (C)�A1;iT (0))2
!1=2 

1

n

nX
i=1

(A1;iT (C) +A1;iT (0))2
!1=2

sup
i
B11;iT (0)

�1

= nOp

�
1

n1=8T 1=2

�
Op (1)O (1) = Op

�
n7=8

T 1=2

�
= op (1) ;

where the �rst equality holds by Lemma 13(c),(d), and supiE (A1;iT (C)�A1;iT (0))
2
=

O
�

1
n1=2T

�
; and the last equality holds since n

T 1=2
= o (1). Combining these two,

we have the required result

nX
i=1

h
A1;iT (C)2B11;iT (C)�1 �A1;iT (0)2B11;iT (0)�1

i
= op (1) :

The second required result for Step 2 follows in similar fashion and we omit it.
�
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5.6 Proof of (19)

The required result follows, if we show

nX
i=1

h
AiT (C)0BiT (C)�1AiT (C)�AiT (0)BiT (0)�1AiT (0)

i
�

nX
i=1

h
A�iT (C)

0
B�iT (C)

�1
A�iT (C)�A�iT (0)

0
B�iT (0)

�1
A�iT (0)

i
= op (1) ;

which will be established by the following three steps.

� Step 1: We show
nX
i=1

h
AiT (C)0BiT (C)�1AiT (C)�AiT (0)BiT (0)�1AiT (0)

i
�

nX
i=1

h
A�iT (C)

0
B�iT (C)

�1
A�iT (C)�A�iT (0)

0
B�iT (0)

�1
A�iT (0)

i
=

nX
i=1

h
AiT (C)0 ~BiT (C)�1AiT (C)�AiT (0) ~BiT (0)�1AiT (0)

i
�

nX
i=1

h
A�iT (C)

0 ~B�iT (C)
�1
A�iT (C)�A�iT (0)

0 ~B�iT (0)
�1
A�iT (0)

i
+ op (1) :

� Step 2: By (18) we have

=

nX
i=1

h
AiT (C)0 ~BiT (C)�1AiT (C)�AiT (0) ~BiT (0)�1AiT (0)

i
�

nX
i=1

h
A�iT (C)

0 ~B�iT (C)
�1
A�iT (C)�A�iT (0)

0 ~B�iT (0)
�1
A�iT (0)

i
=

nX
i=1

h
A2;iT (C)2B22;iT (C)�1 �A�2;iT (C)

2
B�22;iT (C)

�1
i

�
nX
i=1

h
A2;iT (0)

2
B22;iT (0)

�1 �A�2;iT (0)
2
B�22;iT (0)

�1
i
+ op (1) :

� Step 3: We show
nX
i=1

h
A2;iT (C)2B22;iT (C)�1 �A�2;iT (C)

2
B�22;iT (C)

�1
i
= op (1)

nX
i=1

h
A2;iT (0)

2
B22;iT (0)

�1 �A�2;iT (0)
2
B�22;iT (0)

�1
i
= op (1) :
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Proof of Step 1: Notice that since B�iT (C) is a diagonal matrix,

nX
i=1

A�iT (C)
0
�
B�iT (C)

�1 � ~B�iT (C)
�1
�
A�iT (C) = 0:

Then, the required result for Step 1 follows if we show

nX
i=1

AiT (C)0
�
BiT (C)�1 � ~BiT (C)�1

�
AiT (C) = op (1) :

The required result follows since�����
nX
i=1

AiT (C)0
�
BiT (C)�1 � ~BiT (C)�1

�
AiT (C)

�����
=

�����
nX
i=1

AiT (C)0
�
BiT (C)�1

�
~BiT (C)�BiT (C)

�
~BiT (C)�1

�
AiT (C)

�����
�

nX
i=1

kAiT (C)k2
BiT (C)�1 ~BiT (C)�1 ~BiT (C)�BiT (C)

� n

�
sup
i

BiT (C)�1��sup
i

 ~BiT (C)�1��sup
i

 ~BiT (C)�BiT (C)� 1
n

nX
i=1

kAiT (C)k2
!

= nO (1)O (1)O

�
1

T 1=2

�
Op (1) = Op

� n

T 1=2

�
= op (1) ;

where the last line holds by Lemma 13(b),(c), and (d) and the condition n
T 1=4

!
0: �

Proof of Step 3: We show

nX
i=1

h
A2;iT (C)2B22;iT (C)�1 �A�2;iT (C)

2
B�22;iT (C)

�1
i
= op (1) :

The other required result
Pn

i=1

h
A2;iT (0)

2
B22;iT (0)

�1 �A�2;iT (0)
2
B�22;iT (0)

�1
i
=

op (1) follows in similar fashion and we omit the derivation. Notice that�����
nX
i=1

h
A2;iT (C)2B22;iT (C)�1 �A�2;iT (C)

2
B�22;iT (C)

�1
i�����

�
�����
nX
i=1

�
A2;iT (C)2 �A�2;iT (C)

2
�
B22;iT (C)�1

�����+
�����
nX
i=1

A�2;iT (C)
2
�
B22;iT (C)�1 �B�22;iT (C)

�1
������
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For the �rst term, we have�����
nX
i=1

�
A2;iT (C)2 �A�2;iT (C)

2
�
B22;iT (C)�1

�����
� n

 
1

n

nX
i=1

�
A2;iT (C)�A�2;iT (C)

�2!1=2 1
n

nX
i=1

�
A2;iT (C) +A�2;iT (C)

�2!1=2
sup
i
B22;iT (C)�1

= nOp

�
1

T 1=4

�
Op (1)O (1) = Op

� n

T 1=4

�
= op (1) ;

where the �rst equality holds by Lemma 13(c),(d), and (g) and the last equality
holds by the condition n

T 1=4
! 0. For the second term, notice that�����

nX
i=1

h
A�2;iT (C)

2
�
B22;iT (C)�1 �B�22;iT (C)

�1
�i�����

=

�����
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n
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A�2;iT (C)
2

!�
sup
i
B22;iT (C)�1

��
sup
i
B�22;iT (C)

�1
�
sup
i

��B22;iT (C)�B�22;iT (C)��
= nOp (1)O (1)O (1)O

�
1

T 1=2

�
= Op

� n

T 1=2

�
= op (1) ;

where the second equality holds by Lemma 13(c),(d), and (f) and the last equal-
ity holds by the condition n

T 1=4
! 0: Then, we have all the desired results for

Part (c). �

6 Proofs of the Limit Distribution Results: The-
orems 3, 5, and 7

In this section we provide proofs of Theorems 3, 5, and 7. These proofs are
very similar to the proofs of the corresponding results in MPP and we therefore
provide just an outline of the proofs here.
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6.1 Proof of Theorem 3

Since �yit = � �i
n1=2T

yit�1 + uit, we can write

VnT (C)

=
nX
i=1

1

!2i

"
y2i1 +
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(�ciyit)
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�
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!2i

+
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nT 2

nX
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c2i
!2i
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t=2

y2it�1 �
1

2
�c;2:

Direct calculation shows that under the assumptions of the theorem, we have
the following joint limits

� 2

nT 2

nX
i=1

TX
t=1

ci�i
!2i
y2it�1 ! p � E (ci�i) ;

1

nT 2
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i=1
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!2i

TX
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1

2
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and CLT
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!2i

 
1

T
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!
) N

�
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�
;

thereby giving the required result. �

6.2 Proof Theorem 5

For the required result of the theorem, it is enough to show that

Vfe1;nT (C) = VnT (C) + op (1) :

Let b̂0i (ci) = (�ciG
0
0�ciG0)

�1
(�ciG

0
0�ciZi) : Then Zi � G0b̂0i (ci) = Y i �

G0

�
b̂0i (ci)� b0i

�
; and we can rewrite Vfe1;nT (C) as
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=
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!2i
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��0 �
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��
35

� 2
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� 1
2
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where

Vfe11;nT (C) =
nX
i=1

1

!2i

� �
�Y 0i�G0

�
(�G00�G0)

�1
(�G00�Y i)

�
�
�ciY

0
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�
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0
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�1
(�ciG

0
0�ciY i)

�
:

We can follow the proof on pages 449-450 of MPP and deduce that

Vfe11;nT (C) = op (1)

as n; T !1 with n
T ! 0; which proves the desired result. �

6.3 Proof of Theorem 7

The required result for Theorem 7 is a consequence of the following two lemmas.
�

Lemma 14 Assume Condition 1. Then, as n; T !1 with n
T ! 0; we have
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Proof. The proof is similar to the proof of Lemma 11 of MPP and is omitted.

Lemma 15 Assume Condition 1. Then, as n; T !1 with n
T ! 0; the follow-

ing hold:

(a) 1
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(c) 1
n
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Proof. The proofs of Parts (b) and (c) are similar to those of Lemma 12 (b)
and (c) and are skipped.
Part (a): First, notice from
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Under the assumptions of the lemma,
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leading to the required result for Part (a).
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7 Proof of Theorem 9

We provide a sketch of the proof. Notice that under Condition 8, the following
hold:

sup
i

��!̂2i � !2i �� ; sup
i

����̂2i � �2i ��� ; sup
i

���̂2i � �2i �� = op (1)

nX
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�
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�2
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i=1

�
�̂
2

i � �2i
�2
;

nX
i=1

�
�̂2i � �2i

�2
= op (1) :

De�ne {̂ = argmini2f1;:::;ng !̂
2
i and i

� = argmini2f1;:::;ng !
2
i Then,

inf
i
!̂2i � inf

i
!2i � !̂2{̂ � !2{̂ � � sup

i

��!̂2i � !2i �� = op (1)
and
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i
!̂2i � inf

i
!2i � !̂2i� � !2i� � sup

i

��!̂2i � !2i �� = op (1) :
Since infi !2i > 0 under Condition 1, we have

inf
i
!̂2i = inf

i
!2i + op (1) > 0

with probability approaching one. These imply that !̂2i satis�es the properties

in Lemmas 8, 10, and 14 of MPP, while �̂
2

i and �̂
2
i satisfy the properties in

Lemmas 8(a),(b), 10(a), and 14(a)-(d) of MPP. The desired results follow by
similar arguments to those used in Theorems 8, 10, and 15 of MPP. �
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T = 100 T = 250 T = 100 T = 250 T = 100 T = 250

white noise 2.8 2.9 4.2 4.2 5.3 4.9

2.8 2.8 4.1 4.0 4.5 4.5

AR(1) errors

-0.2 2.9 2.6 4.2 3.9 5.1 5.0

2.7 2.7 3.8 3.7 3.9 4.5

0.2 2.9 2.8 4.1 4.0 6.2 5.4

2.8 2.8 4.1 3.9 5.6 5.1

MA(1) errors

-0.2 4.2 4.0 7.5 7.2 14.9 15.7

2.9 2.7 3.7 3.8 4.0 4.5

0.2 3.5 3.8 6.4 6.6 13.6 11.5

2.7 3.0 3.9 4.4 4.9 4.6

white noise 1.0 1.1 2.9 2.3 6.3 4.4

1.3 1.2 3.4 2.6 7.4 4.7

AR(1) errors

-0.2 0.9 1.0 2.2 2.2 4.1 4.0

1.1 1.1 2.4 2.3 3.9 4.0

0.2 1.0 1.0 3.5 2.7 8.8 5.1

1.5 1.2 4.7 3.1 11.6 5.7

MA(1) errors

-0.2 2.2 2.0 6.7 7.8 23.0 23.4

0.8 0.9 2.3 2.4 3.1 3.3

0.2 2.7 2.0 7.5 6.3 27.2 19.4

2.0 1.2 4.3 3.0 9.7 6.0

Top entry in each cell is with estimated long-run variance and second with known long-run variance

N = 100

Incidental intercepts

Table 1. Size of tests robust to serial correlation (nominal size is 5%)

Incidental trends

N= 10 N = 25


