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Abstract

We argue that the predictive regression between implied volatility (regressor) and re-
alized volatility over the remaining life of a European option (regressand) is likely to be
a fractional cointegrating relation. Since cointegration is associated with long-run co-
movements, this classical regression cannot be used to test for option market efficiency and
short-term unbiasedness of implied volatility as a predictor of realized volatility. Exploiting
fractional cointegration and using narrow band spectral methods, we provide consistent es-
timates of the long-run relation between implied and realized volatility even when implied
volatility is measured with error and/or volatility is priced but the volatility risk premium
is unobservable. This result is in contrast with much existing work where the use of ordi-
nary least squares methods leads to inconsistent (and downward biased) slope estimates.
We find that, while little can be said about short-term unbiasedness, our results largely
support a notion of long-run unbiasedness of implied volatility as a predictor of realized
volatility.
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1 Introduction

Implied volatility is widely regarded as the market’s best forecast of the future volatility of

the asset an option is written on. As a consequence, there has been substantial interest in

verifying whether implied volatility is an unbiased forecast of future (ex-post) realized volatility.

Consider the regression

σRt = α+ βσBSt + εt, (1)

where σBSt denotes Black and Scholes implied volatility at time t, σRt denotes realized volatility

until the option’s expiration time T (with T > t), and εt is a forecast error. Unbiasedness is

verified by testing whether the slope and the intercept of this classical regression are equal to

1 and 0, respectively.

The early studies on this topic generally maintained that implied volatility is an infor-

mative but biased forecast of future realized volatility. The interested reader is referred to

Poteshman (2000) for a complete discussion of the literature. Nonetheless, recent work has

pointed out that the evidence in favor of unbiasedness is stronger once the three issues that are

believed to contaminate the relevant predictive regression are properly accounted for, namely

errors-in-variables (Christensen and Prabhala (1998), Poteshman (2000), and Chernov (2004),

among others), overlapping data (Christensen and Prabhala (1998)), and missing variables

(Poteshman (2000) and Chernov (2004)). This evidence is generally employed to support

option market efficiency and short-term unbiasedness of implied volatility as a predictor of

realized volatility over the option’s life.

This paper proposes a different interpretation of the classical implied/realized volatility re-

gression. We find that both realized volatility and implied volatility are fractionally integrated

(Taylor (1986), Ding et al. (1993), and Dacorogna et al. (1993) are important early references

on the relevance of long range dependence in volatility measures, Baillie et al. (1996), Boller-

slev and Mikkelsen (1996, 1999), Comte and Renault (1998), Comte et al. (2003), Ray and

Tsay (2000), Andersen et al. (2001a), and Andersen et al. (2001b)), among others, provide

more recent evidence). More importantly for our purposes, we show that the relation between

implied volatility and realized volatility is likely to be a fractionally cointegrating relation.
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Since cointegration is associated with long-run comovements, the classical predictive regres-

sion of realized volatility on implied volatility should not be regarded as providing information

about either option market efficiency or short-term unbiasedness of implied volatility as a pre-

dictor of realized volatility. Rather, this regression provides information about the nature of

the long-run relation between the two volatility proxies.

Having made these points, we proceed to the estimation of the model. Fractional coin-

tegration provides us with a useful econometric framework to tackle the main issues that

pollute standard OLS inference in the implied/realized volatility predictive regression, namely

measurement error and risk premia. To this extent, we employ methods that focus on fre-

quencies in the neighborhood of zero and hence on long-run movements, i.e., narrow band

spectral least squares (NBLS) methods. Consider the existence of a volatility risk premium

(Poteshman (2000) and Chernov (2004)), for example. Traditional semimartingale option pric-

ing implies that the expected value of realized volatility depends (approximately) linearly on

implied volatility and a volatility risk premium. Hence, the classical implied/realized volatility

predictive regression should include a regressor proxying for the volatility risk premium. Since

the risk premium is likely to be correlated with implied volatility, not accounting for it results

in inconsistent OLS estimates. The use of NBLS methods allow us to estimate the long-run

relation between implied and realized volatility consistently even if a risk premium plays a

role. Our consistency result does not depend on a potentially ad-hoc parametrization of the

risk premium and the explicit inclusion of the risk premium in the predictive regression, as in

Chernov (2004) for example. This is an important feature of our analysis.

Even though short-term unbiasedness cannot be studied, using three data sets (the VIX

and the S&P 100 index, S&P 100 option prices and the S&P 100 index, and option prices

on Deutschemark-Dollar futures) as well as three commonly-used transformations of the data

(variances, standard deviations, and logarithmic standard deviations), we find rather strong

empirical support for a long-term notion of the conventional unbiasedness hypothesis.

The paper is organized as follows. Section 2 contains a description of the data and an analy-

sis of the fractional cointegration properties of realized and implied volatility series. In Section

3 we present our econometric approach. Section 4 confirms the validity of our econometric

method through simulations relying on an option pricing model with long-memory stochastic
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volatility as well as leverage effects in the underlying. The estimated relation between realized

and implied volatility is reported in Section 5. Section 6 concludes. The Appendix contains

further simulation results and discussions.

2 The data

In order to motivate our analysis, we first describe the data and verify the fractional integration

and cointegration properties of our volatility measures.

Our main data set consists of observations on the VIX (i.e., the CBOE Market Volatility

index) and the S&P 100 (OEX) index from January 1988 to October 2003. Note that the

CBOE has recently changed the ticker symbol for the S&P 100 implied volatility to VXO,

while VIX now refers to the S&P 500 implied volatility. Throughout the paper, we continue to

use the symbol VIX to refer to the S&P 100 implied volatility. The VIX is the implied volatility

of a non-traded (synthetic) at-the-money option contract with one month to maturity. This

measure is believed to be less affected by the problems that pollute standard implied volatility

measures extracted from OEX contracts (i.e., the potential nonsynchronous measurement of

option and index levels, early exercise and dividends, bid-ask spreads as well as the wild card

option in the OEX market, see Christensen and Prabhala (1998) for discussions). The VIX

was first used in predictive regressions of the type analyzed here by Chernov (2004). We use

monthly non-overlapping observations to control the correlation structure of the regression

errors by taking the closing value of each month, as suggested by Christensen and Prabhala

(1998). We also multiply the VIX data by a constant factor equal to
¡
252
365

¢1/2
to account for

the difference between trading and calendar days (Schwert (2002)).

As in the early work by French et al. (1987) and Schwert (1989), we compute the realized

volatility over the remaining life (one month) of the option as

σRt =

vuut 1

nt

ntX
j=1

r2j × 252, (2)

where rj = log (Sj/Sj−1) , Sj is the closing value of the S&P 100 index on the jth trading day

of month t and nt is the number of trading days in month t.

In sum, the data transformations result in two monthly time series, σBSt and σRt , where σ
BS
t

is the annualized (assuming 252 trading days per year) Black and Scholes implied standard
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deviation for a synthetic, at-the-money, option contract with one month to maturity, as implied

by the VIX, and σRt is the annualized realized standard deviation of the S&P 100 index over the

remaining life (one month) of the option, respectively. Both series contain 191 non-overlapping

observations.

Table 1 provides descriptive statistics for the two volatility measures.

Table 1 about here

We notice that both implied volatility and realized volatility display heavy tails and pos-

itive skewness. As typically the case with volatility measures (see Andersen et al. (2006) for

instance), a simple logarithmic transformation (not reported here) would almost lead to nor-

mality. The mean of implied volatility is larger than the mean of realized volatility, suggesting

a possible risk premium.

We now analyze the persistence properties of the data. As discussed in the Introduction,

we model persistence in volatility through a long-memory model. The long-memory parameter

d is estimated in a semiparametric fashion. We report results for both the standard log-

periodogram estimator (Geweke and Porter-Hudak (1983), GPH henceforth) and the Gaussian

semiparametric local Whittle estimator (Künsch (1987) and Robinson (1995b)). We have also

considered the modified log-periodogram estimators of Andrews and Guggenberger (2003) and

Sun and Phillips (2003) as well as the modified Whittle estimators of Andrews and Sun (2004)

and Hurvich and Ray (2003). Our main findings are not affected by the choice of estimator.

The corresponding results are available upon request.

The GPH estimator (bdn,m) is obtained as the OLS estimate of d in the frequency-domain
regression

lnP (λs) = γ0 − d ln
µ
4

µ
sin2

µ
λs
2

¶¶¶
+ ε (λs) , (3)

where P (.) is the periodogram of the data computed at the harmonic frequencies λs =
2πs
n

with s = 1, ...,m < n
2 . The asymptotic standard errors are derived from the result

√
m
³bdn,m − d´⇒N

µ
0,
π2

24

¶
. (4)
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Under Gaussian assumptions, the limiting distribution in Eq. (4) was obtained by Robinson

(1995a) in the presence of stationary data and by Velasco (1999) in the presence of nonsta-

tionary data with 1
2 ≤ d <

3
4 . Moreover, for

1
2 < d < 1 the GPH estimator is known to be

consistent (Velasco (1999)). Milder conditions can be invoked for this result to be valid as

shown by Kim and Phillips (1999a) and Velasco (2000) using a tapered version of the GPH

estimator.

The local Whittle estimator (d̃n,m) of Künsch (1987) and Robinson (1995b) maximizes a

frequency-domain Gaussian likelihood for frequencies in the neighborhood of zero, i.e.,

log

"
1

m

mX
s=1

λ2ds P (λs)

#
− 2 d

m

mX
s=1

log λs.

Robinson (1995b) derived the asymptotic behavior of this estimator:

√
m
³
d̃n,m − d

´
⇒N

µ
0,
1

4

¶
.

Since 1/4 < π2/24 ≈ 0.4112, the local Whittle estimator is asymptotically more efficient than

the GPH estimator for the same choice of m.

Both of our d estimators require the use of a bandwidth parameter m that determines the

locality of the estimator. The choice of m typically involves a standard bias/variance trade-

off. Some data-dependent rules have been proposed, for example by Hurvich and Deo (1999)

and Andrews and Guggenberger (2003). However, we feel that it is necessary to explore the

robustness of our results to the choice of bandwidth. Accordingly, in the figures we report our

findings for values of the bandwidth parameter m between [
√
n] and

£
n0.8

¤
+ 1, where [x] is

the integer part of x.

In Fig. 1 we report the d estimates and the corresponding 95% confidence bands for the

original volatility series σBSt and σRt as well as for their difference (i.e., the residuals obtained

by imposing the unbiasedness hypothesis in Eq. (1)) and the OLS residuals from Eq. (1). As

we discuss below, there are reasons to believe that the cointegrating vector between implied

and realized volatility could be different from (1,−1), so the use of the differences should be

seen as illustrative. Moreover, since OLS are, in general, consistent only in the nonstationary

case (dx ≥ 0.5) and since there is uncertainty as to whether the data is stationary or not (see
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below), the OLS results should also be seen as illustrative only. For clarity, in Table 2 we

report the estimated d values and standard errors for a few selected bandwidths.

Figure 1 about here

Table 2 about here

In the presence of fractional cointegration, the long-memory parameters of the two volatility

series should be equal to each other, whereas the long-memory parameter of the residuals

should be less than that of the original volatility series. Fig. 1 provides graphical evidence for

this result in our data. As typical in fractional models, the d parameter estimates are fairly

imprecise with large standard error bands (see Baillie (1996)). Nonetheless, these estimates

are rather stable over a wide range of bandwidths and similar across volatility measures. Since

both sets of residuals tend to have a lower degree of fractional integration, our results suggest

cointegration of the fractional type. Interestingly, cointegration in the nonstationary region

appears to be possible.

In order to sharpen our estimates of the long memory parameter, Table 2 includes joint

estimates constraining the d parameters for implied volatility and realized volatility to be the

same (column 4). We use the multivariate constrained GPH suggested by Robinson (1995a)

and the multivariate local Whittle estimator explored by Lobato (1999). Robinson proposes

two versions of the multivariate GPH: one that uses OLS to compute the constrained estimator

(reported in the table) and one that uses GLS. While the GLS estimator has an asymptotic

efficiency advantage over the OLS estimator, this estimator is inconsistent under cointegration

since the covariance matrix to be inverted is singular in this case. Similarly, the multivariate

Whittle estimator is inconsistent under cointegration (Marinucci and Robinson (2001)). The

multivariate GPH OLS estimates tend to be between the corresponding univariate estimates

for implied and realized volatility. The local Whittle estimates tend to be lower than either of

the univariate estimates.

We have verified the robustness of our finding of fractional cointegration by applying the

previous approach to two additional data sets that were employed in previous studies. The

first data set was used in Christensen and Prabhala (1998) and consists of monthly data on
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the S&P 100 index and OEX options between January 1988 and May 1995 for a total of 89

non-overlapping observations. The data is obtained by examining at-the-money call options

with a month to expiration sampled right after the previous expiration date. The second data

set consists of monthly data on options on Deutschemark-Dollar futures from the Chicago

Mercantile Exchange (CME). The time frame is January 1990 to November 1998 for a total

of 107 non-overlapping observations. Similar data is used in Jorion (1995), but the sample

there covers the January 1985 to February 1992 period. This market moved from quarterly

option expiration dates to monthly expiration dates in 1987. We work with data from 1990

to avoid any potential adjustment/learning effects that this change might have caused. Jorion

(1995) discusses the advantages of CME options on foreign currency features over the OEX

options. Specifically, empirical work based on the former is expected to be less contaminated by

measurement errors since option and underlying trade side-by-side. The results are presented

in Figs. 2 and 3 and Tables 3 and 4.

Figure 2 about here

Table 3 about here

Figure 3 about here

Table 4 about here

Our finding of fractional cointegration appears to be a stylized fact. As a final robustness

check (not reported here for brevity but available from the authors upon request), we have

considered two additional transformations of the data that have been implemented in previous

research, namely variances and logarithmic volatilities. Our original formulation, i.e. standard

deviations, is used in Canina and Figlewski (1993), Fleming (1998), Jorion (1995), Christensen

and Prabhala (1998), and Poteshman (2000), among others. Day and Lewis (1992, 1993),

Lamoureux and Lastrapes (1993), and Chernov (2004) use variances. The logarithmic trans-

formation is used in Christensen and Prabhala (1998) and Christensen and Nielsen (2005).

The conclusions we draw are consistent with our previous findings.

Having documented fractional cointegration in our data (a fact that necessarily changes our

understanding and interpretation of the classical implied/realized volatility predictive regres-
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sion), we now turn to an econometric model that accounts for fractional cointegration while

providing a solution to the issues that the existing literature has indicated as crucially affecting

standard OLS inference in the implied/realized volatility predictive regression.

3 Econometric framework

Two main econometric issues have been discussed in the literature on the predictive power of

implied volatility, i.e., the presence of an unobserved volatility risk premium and measurement

error in implied volatility.

We start with the former. Much recent work has emphasized the importance of explicitly

allowing for a time-varying volatility risk premium in option pricing (Benzoni (1998) and

Pan (2002), among others) and in the context of the implied/realized volatility regression

(Poteshman (2000) and Chernov (2004)). The regression then becomes

σRt = α∗ + β∗σBSt + γRPt + et, (5)

where RPt denotes a time varying volatility risk premium. In order to explicitly account for a

risk premium, the existing work relies on tight parametrizations for it. Unfortunately, simple

no-arbitrage principles do not provide us with an expression for the risk premium. If volatility

is not a traded asset, markets are incomplete and an infinite number of martingale measures

are compatible with the absence of arbitrage. Only a fully-specified equilibrium model could

shed some light on the features of the volatility premium (see Pham and Touzi (1996), for

example).

From an econometric standpoint, any parametric assumption about the risk premium is,

therefore, arbitrary and potentially misleading. In what follows we will account for a risk

premium but treat it as unobservable. Interestingly, an unobservable risk premium that is

correlated with implied volatility would lead to inconsistent OLS estimates of the parameter

β∗ in the standard short-memory framework. Exploiting fractional cointegration and using

NBLS we are able to estimate the relation between implied and realized volatility consistently

even when a risk premium correlated with implied volatility plays a role. As we explain below,

we do so without having to proxy for it.
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Moreover, measurement error in implied volatility could arise from the nonsynchronous

measurement of options and index levels as well as the bid-ask spreads in option and underly-

ing prices (see the discussion in Christensen and Prabhala (1998)). Similarly to the presence

of an unobserved (and unaccounted for) risk premium correlated with implied volatility, mea-

surement error in implied volatility induces inconsistent OLS slope estimates in the standard

short-memory framework. Again, the use of NBLS in our fractionally cointegrated set-up al-

lows us to obtain consistent slope estimates even when implied volatility is measured with

noise.

With these observations in mind, we now turn to the estimated model. Denote by E the

unconditional expectation and define

yt = σRt , (6)

xt = σBSt + uBSt , (7)

δt = γ {RPt −E (RPt)} , (8)

α = α∗ + γE (RPt) , (9)

β = β∗, (10)

where yt and xt are the observable volatility series and the shock u
BS
t denotes measurement

error in implied volatility. Measurement error in realized volatility, as in Poteshman (2000)

and Chernov (2004), can be easily accommodated as well without any effects on our results.

Then, Eq. (5) suggests the regression model

yt = α+ β
¡
xt − uBSt

¢
+ δt + et, (11)

or

yt = α+ βxt + εt (12)

with εt = −βuBSt + δt + et. Consistently with the empirical evidence in Section 2, we model

xt and εt as linear processes with spectra satisfying
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fx(λ) ≈ λ−2dx as λ→ 0+, (13)

fε(λ) ≈ λ−2dε as λ→ 0+, (14)

respectively.

We recognize the fractional cointegration between yt and xt by assuming that the parame-

ters dx and dε satisfy dx > dε. Based on our discussion of the data in Section 2, the fractional

parameter dx can be either in the stationary region (i.e., dx <
1
2) or in the nonstationary region

(i.e., dx ≥ 1
2).

Two observations are in order. First, the residuals εt can be long-range dependent. Even

if the measurement error uBSt were short-range dependent, the long memory of the residuals

may be induced by the quantity δt (which is a linear function of the de-meaned volatility risk

premium). Second, we allow for potential correlation between δt and the implied volatility

proxy xt and, as a consequence, between εt and xt. Both properties are important since

spot volatility has been documented to be long-range dependent (see Bollerslev and Mikkelsen

(1996), among others). If the unobserved risk premium depends on the underlying’s spot

volatility as often assumed, then the risk premium possesses long memory, and correlation

between the implied volatility proxy (the regressor) and the regression residuals containing the

risk premium follows immediately.

Notice that contrary to the existing literature, an estimated α which is significantly different

from zero cannot be invoked to rule out “unbiasedness.” In fact, in the presence of a non-

vanishing expected risk premium E (RPt) the true α can be different from zero.

3.1 The NBLS estimates

We now turn to the details of the econometric procedure. We notice that Eq. (12) implies

yt − y = β (xt − x) + (εt − ε) , (15)

where a = (
Pn
t=1 at) /n for a generic time-series {at : t = 1, ..., n}. We define the discrete

Fourier transforms,
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$y(λs) : =
1√
2πn

nX
t=1

yte
itλs =

1√
2πn

nX
t=1

(yt − y) eitλs (16)

$x(λs) : =
1√
2πn

nX
t=1

xte
itλs =

1√
2πn

nX
t=1

(xt − x) eitλs (17)

$ε(λs) : =
1√
2πn

nX
t=1

εte
itλs =

1√
2πn

nX
t=1

(εt − ε) eitλs (18)

at the harmonic (Fourier) frequencies λs =
2πs
n , where s = 0, 1, ...., n−1. The (cross-)periodogram,

say between y and x, is given by

Pyx(λs) = $y(λs)$x(λs). (19)

where $x(λs) is the complex conjugate of $x(λs). The NBLS estimator of β is defined as

bβn,m = Re
³ bFxy(1,m)´bFxx(1,m) =

Re
³ bFxy(0,m)´− xybFxx(0,m)− x2 , (20)

where

bFxy(l,m) = 2π

n

mX
s=l

Pyx(λs) l = 1, 0 (21)

with m < n
2 . In other words, NBLS can be interpreted as OLS in the frequency domain over

the first m frequencies. We will assume that m→∞ as the sample size n diverges to infinity

and m
n → 0, so that we estimate over a degenerating window of frequencies. We estimate α

using

bαn,m = y − bβn,mx. (22)

Some remarks are in order. We start with the stationary case (i.e., dx <
1
2). As discussed

by Robinson (1994a), even though OLS estimation is inconsistent in the presence of correla-

tion between the regressor and the residuals, the NBLS estimator of the slope parameter in

the same regression is generally consistent provided regressand and regressor are linked by a

cointegrating relation. In our framework, correlation between the regressor and the regres-

sion error is induced by the likely correlation between xt (proxy for implied volatility), the
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quantity δt (which contains the de-meaned volatility risk premium) and measurement error.

Hence, fractional cointegration in the stationary case allows us to get around the problems

posed by the existence of a time-varying volatility risk premium possibly correlated with im-

plied volatility, for example. If the risk premium is of lower order of integration than implied

volatility (below we come back to this assumption), then its spectrum is dominated by that

of implied volatility near the zero frequency. Performing least squares over a degenerating

band of frequencies in the neighborhood of the origin exploits this property. These results are

summarized in the following proposition whose proof follows from that of Robinson (1994a)

and is therefore omitted.

Proposition Consider the predictive model for realized volatility yt given an implied volatility

proxy xt

yt = α+ βxt + εt (23)

with εt = −βuBSt + δt+ et, where u
BS
t is a measurement error, et is a forecast error and δt is

a linear function of the de-meaned time-varying volatility risk premium. Assume uBSt and δt

are correlated with xt. Also, assume the spectra of xt and εt satisfy

fx(λ) ≈ λ−2dx as λ→ 0+, (24)

fε(λ) ≈ λ−2dε as λ→ 0+, (25)

respectively, and dx > dε with 0 ≤ dx, dε < 1
2 . Then, the NBLS estimates defined in Eq. (20)

and Eq. (22) are consistent in probability if 1/m+m/n→ 0 as n→∞.

We now turn to the nonstationary case (i.e., dx ≥ 1
2). Typically, in cointegrating relations

of the I(1)/I(0) type OLS is consistent even in the presence of regression residuals that are

correlated with the regressor since endogeneity only requires second-order adjustments to the

asymptotic distribution of the OLS parameter estimates (Park and Phillips (1988)). The

same result trivially emerges from fractionally cointegrating regressions of the type analyzed

here as shown by Kim and Phillips (1999b) and Robinson and Marinucci (2001, 2003), RM

13



henceforth, among others. Nonetheless, NBLS methods may entail faster rates of convergence

than OLS in some cases (see RM (2001, 2003)), thereby providing justification for their use

even in situations where more conventional tools could be employed.

In order to assess the statistical significance of the regression estimates, we rely on sub-

sampling (see Politis et al. (1999) for a complete discussion). We prefer subsampling over the

usual bootstrap because of its wider applicability. The only requirements for its validity are

the existence of a limiting distribution and conditions limiting the dependence of either the

data or the subsampled statistics. For example, subsampling is applicable to the case of an

autoregression with a unit root, while the standard bootstrap is not. Another advantage of

subsampling over the bootstrap is that the rate of convergence to the asymptotic distribution

does not have to be known and can be estimated (see also Bertail et al. (1999)). This property

is particularly attractive given that there is uncertainty as to whether we are in the stationary

range or not and the convergence rates depend on the long memory parameters of both the

regressors and the errors. Moreover, it is likely that the rates of convergence of the constant

and slope estimators are different. Our subsampling approach can estimate these different

rates consistently. In fact, Politis et al. (1999) use long memory and the different rates of con-

vergence of the sample mean in the stationary and nonstationary case as a motivating example

for the need to estimate convergence rates (see their Example 8.1.3).

In our framework, the conditions of Theorems 8.2.2 (consistent estimation of the unknown

convergence rate) and 8.3.1 (validity of subsampling with a consistently estimated convergence

rate) of Politis et al. (1999) are satisfied under some very standard asymptotic requirements.

First, if the parameter of interest is ϑ, then nδ
³bϑ− ϑ0

´
must have a limiting cumulative

distribution function which is continuous and strictly increasing for some δ > 0. Virtually all

known theoretical results currently available for NBLS take this form, whether the data is

stationary or not, as long as the bandwidth is selected to be a fractional power of sample size.

Second, the size b of the subsamples must grow to infinity while the ratio b/n vanishes as the

sample size diverges to infinity. This is accomplished by taking subsamples of size b =
h
n
2
3

i
,

where [x] denotes, as usual, the integer part of x (see Politis and Romano (1994) and Bertail

et al. (1999) for a similar choice), and resampling the couple (yt, xt) in order to preserve

the correlation between the regressors and the errors. We compute statistics on all n − b+ 1
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subsamples of b successive observations and choose mb, the number of Fourier frequencies to

compute the NBLS estimator for each subsample, to be the same fraction of the sample size

as in the original data, i.e., mb
b = m

n . Under these conditions, we can obtain asymptotically

valid confidence intervals without knowing whether we are in the stationary case or in the

nonstationary case. In the next section we illustrate the finite sample performance of our

subsampling procedure through simulations.

Recently, Christensen and Nielsen (2005), CN henceforth, have provided an important

theoretical contribution, namely the asymptotic distribution of the NBLS estimator in the

stationary fractionally cointegrated case. Using their theory CN (2005) obtain results similar

to ours (in Section 5) about the relation between implied and realized volatility using high-

frequency data. Hence, they offer support to the robustness of our results to the use of

data sampled at frequencies that are different from the frequencies used in the present study.

CN’s findings complement the weak convergence results that RM (2001) have derived in the

nonstationary fractionally cointegrated situation. For completeness, along with subsampling

bands we report in our empirical work both CN’s confidence bands (when applicable in the

stationary d case) and RM’s confidence bands in the nonstationary d case.

3.2 Interpretation of the slope estimates

Our interest is in estimating the long-run relation between implied and realized volatility over

the option’s life. We will estimate β and test whether β = 1, thereby implying long-run

unbiasedness, but we will not give our β estimates a structural interpretation.

There are two reasons why the true coefficient could be different from one. The first

reason has a statistical flavor stemming from our cointegrating framework. The second reason

has a superior economic appeal and would be valid even in more conventional settings with

short-range dependence (see, for example, Renault (2001)).

We start with the first explanation. In the above Proposition, we have assumed that the risk

premium is of lower order of integration than implied volatility. However, it is possible for the

risk premium to be of the same order of integration as implied volatility and cointegrated with

it. Assume realized volatility is cointegrated with implied volatility and the risk premium (with

a cointegrating vector equal to (1,−1,−γ), say), and the risk premium is cointegrated with
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implied volatility (with a cointegrating vector equal to (1,−θ), say), then the true cointegrating

vector between realized and implied volatility would not be (1,−1) but (1,−(1 + γθ)). A risk

premium that is a linear function of the unobservable spot volatility as in Heston’s model

(Heston (1993)) would deliver this result. In this case, bαn,m and bβn,m would nevertheless

be consistent estimates of the parameters of the true long-run relation between implied and

realized volatility. However, bβn,m would be a consistent estimate of (1 + γθ). Admittedly,

(1 + γθ) can be smaller or larger than 1 depending on γ and the features of the cointegrating

vector between implied volatility and the risk premium as summarized by the coefficient θ. If

the risk premium depends positively on the level of the underlying’s spot volatility and γ = −1

(as implied by some option pricing models), then the long-run slope is expected to be smaller

than 1.

In sum, our treatment of the risk premium as unobservable leads to two cases: either

the risk premium is part of the regression residuals (and does not matter asymptotically) or

it is cointegrated with implied volatility and affects the cointegrating vector. Either way, our

methods lead to consistent estimates of the true long-run relation between implied and realized

volatility series.

We now turn to the second explanation for an estimated slope different from one, namely

the existence of a non-zero correlation between innovations to the underlying’s returns and

innovations to the underlying’s spot volatility process, i.e., leverage effects. In the context of

a continuous-time model for the underlying with long-memory stochastic spot volatility and

leverage ρ, Comte et al. (2003), CCR henceforth, obtain:

σBSt ≈
³p

(1− ρ2)
´
Et
¡
σRt
¢
+RPt, (26)

If ρ 6= 0, as suggested by a substantial amount of recent evidence, CCR’s approximation implies

that the coefficient of the regression of realized on implied volatility should be larger than one

and equal to 1√
(1−ρ2)

. Chernov (2004) has recently emphasized that this approximation might

be less accurate than the approximation implying β = 1. Hence, the true slope is likely to be

somewhere in the interval

∙
1, 1√

(1−ρ2)

¸
. This is consistent with our simulation results reported

below.

Of course, both effects could occur at the same time, thereby leading to further complica-
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tions which cannot be addressed unless one is willing to impose more structure on the problem.

In this paper we do not need to take a stand on the correct β value. Regardless of the true

value of β, the interpretation of our regression as an evaluation of the long-run comovement

between volatility series remains intact, i.e., long-run unbiasedness can be readily tested.

4 Simulations

In this section we evaluate the performance of our econometric approach through simulations.

Specifically, we are interested in analyzing the impact of long memory on the predictive re-

gression between implied and realized volatility, the behavior of our proposed NBLS estimator

versus OLS, and the performance of our subsampling inference.

We simulate a continuous-time process for the underlying’s returns with square-root long-

memory stochastic volatility and leverage as in CCR (2003). Using this process, we price a

European call option, compute the Black and Scholes implied volatility, and relate implied

volatility to the underlying’s realized volatility. The simulated model under the risk neutral

measure is given by

dSt
St

= rdt+
p
VtdW

1
t , (27)

Vt = ev + In(d)(eVt − ev) (28)

with

deVt = k(ev − eVt)dt+ σ

qeVt ³ρdW 1
t +

p
1− ρ2dW 2

t

´
, (29)

where
©
W 1
t ,W

2
t : t ≥ 0

ª
is a standard Wiener process on the plane and In(d) is a fractional

integration operator used to convert the short-memory spot volatility process Ṽt into a long-

memory process Vt with order of fractional integration d (see CCR (2003) for details). As

shown by CCR (2003) both realized volatility and implied volatility display long memory if

spot volatility does. Moreover, realized and implied volatility are cointegrated in that case.

Hence, CCR’s theoretical framework is consistent with our empirical results.

We use the discretized version of the model provided by CCR (2003), with an increment

∆ of 2 hours (1/12 of a day), to generate sample paths of the underlying price process. We
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normalize the logarithmic stock price to be 0 at time 0. We then use the series expansion

in Lewis (2000) to compute a sample of 191 implied volatilities given the generated paths of

spot volatilities and stock prices. Realized volatility is computed by summing the squares of

the daily continuously-compounded returns over the life of the option, i.e., 22 squared returns

corresponding to every 12th simulated value of the logarithmic price process. We replicate this

procedure 1,000 times.

The parameter values are set at those estimated by Ohanissian et al. (2004) using S&P

500 index data, i.e., r = 0.03, ṽ = 0.037, k = 2.16, σ = 0.45, ρ = −0.48, and d = 0.34. Finally,

in order to introduce a likely source of correlation between implied volatility and regression

residuals, we run an experiment in which we add measurement error to the implied volatility

series. Since our goal is to verify the properties of NBLS in the presence of correlation between

implied volatility and the regression residuals, adding a measurement error to implied volatility

achieves this goal. The measurement error is independent through time and is normally dis-

tributed with zero mean and variance that is equal to the variance of the 191 implied volatility

realizations over the corresponding replication.

We can easily relate the assumed measurement error in implied volatility to well-known

market frictions, such as bid-ask spreads in option prices and bid-ask spreads in the underlying’s

price, and provide back-of-the-envelope calculations. Given the parameters of the model, the

implied volatility mean is 0.1846 in annual terms and its variance is 0.0013. Thus, neglecting

nonlinear effects, our measurement error has, on average, a variance of 0.0013. If implied

volatility can take only two values with equal probabilities, namely 0.1846 + c and 0.1846− c,

then we need c =
√
0.0013 = 0.036 in order to replicate this type of measurement error. Hence,

in this stylized set-up, implied volatility must bounce between 0.1485 and 0.2206. This effect

can be accomplished by perturbing any observable variable in the Black and Scholes formula,

but we concentrate on the option price and on the price of the underlying. The Black and

Scholes price of an at-the-money call option with a month to maturity and a volatility of 18.46%

per year with an underlying price of 1 is 0.02306. If implied volatility were 22.06% (14.85%),

the option price would be 0.0273 (0.0188). Thus, we need an option bid-ask spread of 0.0085, or

about 37% of the Black-Scholes price, to rationalize our measurement error. Figlewski (1997)

considers option’s bid-ask bounces of up to 25% of the true option price. Alternatively, if we
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keep the strike price constant, we need the underlying to bounce between 1.0075 and 0.9916,

a total spread of about 1.6% of the efficient price, for implied volatility to have a variance of

0.0013. Figlewski (1997) considers underlying’s bid-ask bounces of up to 2% of the efficient

price. Our assumed measurement error is purposely large. Our explorations suggests that the

relation between size of the measurement error and contaminations in the regression estimates

is monotonic. Hence, for brevity, we only report results for the large noise case and the no

noise case.

For each replication we estimate the d parameter for both volatility proxies. In Table 5

we report results of the estimation of the degree of long memory using both the GPH and the

Whittle estimator. We now consider 3 bandwidths corresponding to n0.5, n0.6, and n0.7 with

n = 191.

Table 5 about here

In agreement with the existing literature (Andrews and Guggenberger (2003), for example),

we find that the d estimates are consistently upward biased in finite sample. Furthermore,

without measurement error both the GPH and the Whittle estimators deliver point estimates

for the fractional parameter that are higher for implied than for realized volatility. Finally,

as suggested by theory, the Whittle estimator is more precise than the GPH estimator. The

addition of measurement error reduces the upward bias of the d estimates.

For each replication we also run a linear regression of realized volatility on a constant and

the implied volatility proxy. This regression is estimated by OLS and NBLS with 6 choices

of bandwidth corresponding to powers of the sample size ranging from n0.25 to n0.8. With our

sample size of 191 observations (for the VIX data), these choices amount to including 3, 8, 14,

23, 39, and 66 Fourier frequencies in the relevant regression. We recall that OLS employ all

95 Fourier frequencies.

Table 6 about here
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Table 6 contains the means of the quantities of interest (i.e., intercept and slope) across

the replications as well as the standard deviations (in parentheses, underneath). The left

panel of the table reports results without measurement error, while the right panel provides

the same information after adding measurement error to implied volatility. The first column

of each panel refers to the estimation of the intercept α, while the second column refers to

the estimation of the slope β. As expected, in the absence of correlation between regressor

and disturbance (i.e., without measurement error), OLS provides good results, with a mean

estimated slope of about 1.06. NBLS deliver a slightly higher mean slope of about 1.08 when

using the three smallest bandwidth choices. The addition of measurement error induces a very

strong negative relation between mean estimates and number of frequencies as it introduces

correlation between regressor and disturbances. In this case, OLS provides very downward

biased estimates in that the slope coefficient is estimated to be only 0.53. NBLS removes most

of the bias with an estimated slope above 1.05 for the two smallest bandwidth choices. In other

words, the obvious downward trend to the estimates of β, as a function of the number of Fourier

frequencies, should be imputed to the accumulation of short-run correlation. To put things in

perspective, we recall that, given our adopted parameter values, the slope coefficient implied

by CCR’s approximate relation is 1√
1−ρ2

≈ 1.14. The slope coefficient given by Chernov’s

approximate relation is 1. As stressed in Subsection 3.2, we conjecture that the true β value

should lay somewhere between 1 and 1.14.

Below the standard deviation of the estimates, we report the frequency that our subsam-

pling confidence intervals (in square brackets) and CN’s confidence intervals (in braces) include

CCR’s theoretical value of 1.14 (we also report the frequency that our subsampling confidence

intervals for the intercept contain the value of 0 but no asymptotic intervals are available

in this case). The results for the CN’s intervals are obtained by using a bandwidth of
£
n.7
¤

when computing the values of d for the regressor and the residuals. There are two numbers

in braces: the first one is the percentage of replications where the resulting interval includes

1.14 among the replications where these intervals can be computed. The second number is the

percentage of replications where the variance of the estimator could not be computed because

the condition d̂x + d̂ε < 1/2 (which is necessary to obtain a positive asymptotic variance in

CN’s framework) was violated. This phenomenon was quite frequent because of the upward
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bias (reported above) in the estimation of d. We eliminated these replications when computing

coverage rates. Overall, the intervals have lower coverage than their nominal level of 95%. The

coverage rate of the subsampling intervals is generally higher than the one of CN’s intervals.

Importantly, the subsampling intervals are less affected by the presence of measurement error,

and intervals are also available for the constant (with comparable coverage rates).

To shed light on all of the issues raised by the option pricing simulations, in the Appendix we

report results from a different simulation experiment. In order to have complete control of the

slope coefficient without invoking approximations, we consider a simple regression framework

between two fractionally cointegrated variables with a common order of integration equal to

.34. There are three main findings.

First, the presence of strong serial correlation in the underlying noise of the regressor (before

integrating to fractional order) induces a large upward bias in the estimation of the regressor’s

d. Some experimentation suggests that this strong bias disappears slowly with an increasing

sample size. This phenomenon might explain the larger d estimates obtained here relative

to the estimates reported in the realized volatility literature (which uses much larger sample

sizes). Similarly, our option-based simulation in this section has strong serial correlation in the

underlying noise (the square-root process for Ṽt). This finding explains the upward bias of the

reported implied volatility d estimates in this section.

Second, the regressand has smaller d estimates that the regressor. Since the regressand

(realized volatility in our application) is a linear combination of the regressor (implied volatility

in our framework) plus noise, this result is due to measurement error in the regressand. The

noise component drives the realized volatility d estimates downward with respect to the implied

volatility d estimates in the no measurement error case.

Third, and importantly for our purposes, there is little effect of the serial correlation in

the regressor’s noise on either the regression point estimates or the coverage rates of the

confidence intervals. Since in the regression context we control the slope coefficient, we feel

comfortable extending this result to the option pricing framework in the present section. As

pointed out earlier, we think that the true slope should be between 1 and 1.14 with 1.08

(approximately our NBLS estimate in the no measurement error case) being a very likely

candidate. This result is interesting and confirms that, with all probability, both CCR’s and
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Chernov’s approximations could be improved upon in that the true slope lays somewhere

between 1 and 1√
(1−ρ2)

. Incidentally, the use of 1.08 as the right slope value would lead to

much higher coverage rates than those reported in Table 6.

5 The estimated relation between implied and realized volatil-
ity

We now turn to the estimation of the model. NBLS estimation of the predictive regression

model in Eq. (12) is presented in Fig. 4 as a function of the number of Fourier frequencies

included in the spectral regression. We also report the results for a few selected bandwidths

in Tables 7-9.

Fig. 4 about here

Table 7 about here

The first row of Fig. 4 corresponds to the results for the S&P 100 index and VIX data

(monthly, from January 1988 to October 2003). As in Section 2, we investigate the robustness

of our findings by estimating the model in Eq. (12) in the presence of two additional sets of

data. The second row corresponds to the results for the S&P 100 index and S&P 100 options

(monthly, from January 1988 to May 1995). The last row corresponds to the results for the

Deutschemark-Dollar options (monthly, from January 1990 to November 1998). Table 8 and

Table 9 are the relevant tables in these cases. Note that the last point on each graph (the point

that includes all the Fourier frequencies) refers to the OLS estimate. The left panels contain

results for the intercept α, while the right panels provide results for the slope coefficient β.

We also report 95% confidence bands for both sets of parameters based on the subsampling

algorithm described in Section 3. Finally, a horizontal line indicates the location of 0 for the

intercept and 1 for the slope for ease of interpretation.

We first discuss the S&P 100 - VIX case. As expected, there is a slight downward trend

to the slope coefficients (such a trend is more evident when analyzing the other two data

sets). This downward trend can be explained by the fact that as the number of frequencies
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in the regression increases, a greater proportion of the high-frequency correlation between the

error term and the observed implied volatility series is included in the regression, leading to

an increased bias of the slope estimates. Nonetheless, the confidence intervals for the slope

coefficients include 1 for all choices of frequencies suggesting long-run unbiasedness. As far

as the intercept estimates are concerned, their values might point to the existence of a slight

(average) long-run compensation for volatility risk.

In addition to the information contained in Fig. 4, Table 7 reports alternative confidence

intervals. It includes confidence intervals for a different choice of subsample size
¡£
n.75

¤¢
as well

as confidence intervals using either CN’s theory or RM’s theory, depending on the estimated d

for each bandwidth: CN’s intervals are in braces, while RM’s intervals are in angled brackets.

Consider, for example, a bandwidth of 3. The NBLS estimate is 1.044 with a subsampling

interval between 0.82 and 1.17 for subsamples of size
£
n2/3

¤
= 33 and between 0.97 and 1.18

for subsamples of size
£
n3/4

¤
= 51. The asymptotic intervals are computed by using the joint

OLS GPH estimator for dx and the GPH estimator for dε. We report confidence intervals for

the same choice of bandwidth used in the estimation of d. If we chose to estimate dx and dε

with n.6 frequencies, the estimate of dx would be 0.412. Since this value is in the stationary

region, we compute CN’s interval. In this case, the residuals have an estimated d of 0.005,

much lower than bdx. The result is an interval between 0.973 and 1.114, quite close to the
subsampling intervals. In most cases, we find the CN’s intervals to be pretty close to those

based on subsampling, but somewhat narrower. On the other hand, the RM’s intervals tend

to be quite narrow. Moreover, in this case the distribution of the estimator is entirely on one

side of the estimated value. Proposition 6.1 of RM (2001) implies that the direction of the

interval is determined by the sign of the covariance between the innovations of the fractionally-

differenced residuals and the regressor. In the above case, for example, if we estimate dx and

dε with
√
n frequencies, we obtain an interval that lies entirely to the left of the point estimate.

Table 8 about here

Table 9 about here
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The results pertaining to the other two data sets (bottom two rows of Fig. 4 and Tables

8 and 9) reinforce our previous findings. The subsampling confidence intervals for the slope

coefficient include 1 for a fairly broad choice of small number of frequencies. Coherently with a

substantial amount of recent work, the use of OLS would lead to rejection of the unbiasedness

hypothesis. Furthermore, the downward trend in the point estimates is much more evident. We

interpret this finding as evidence that our use of the VIX as the implied volatility measure in

our previous data leads to lower measurement error of implied volatility and, consequently, to

lower correlation between the regressor and the residuals (i.e., the term uBSt is less important),

thereby providing more similar slope estimates across different frequencies.

In general, our use of NBLS to remove the effect of the correlation between the residuals and

implied volatility is robust to sensible choices of bandwidth. However, it would be desirable to

investigate the possibility of a data-based method of bandwidth selection. Robinson (1994b)

discusses the choice of optimal bandwidth for spectral estimation with long-memory, but his

work would have to be extended to the case of fractional cointegration. Bandwidth selection

appears to involve a typical bias/variance trade-off as exemplified by the tendency for the

confidence intervals to narrow down as more Fourier frequencies are included in the estimation.

As earlier in Section 2, the results are robust to the choice of the transformation used.

Nonetheless, there is a general tendency for the slope estimates based on the logarithmic

transformation to be highest, followed by the standard deviation and, lastly, by the variance.

The corresponding figures can be provided by the authors upon request.

6 Conclusion

We have argued that the persistence of measures of financial market volatility needs to be taken

into account when assessing the relation between realized and implied volatility. This paper

uses a simple modelling approach based on long memory to capture persistence. In doing so, the

features of the data suggest that the usual predictive regression between realized and implied

volatility (regressand and regressor, respectively) is, in fact, a fractional cointegrating relation.

This finding modifies the interpretation of such regression as a tool to test for option market

efficiency, as typically the case in the existing literature, since only long-run comovements

between the two volatility series can be investigated.
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While the finding of fractional cointegration renders the usual inference carried out in this

framework invalid, the potential long memory property of the data allows us to suggest an

econometric approach to estimate the relation between realized and implied volatility that is

robust to the main issues that were raised in the previous literature as explanations for a slope

coefficient less than one, i.e., measurement error and presence of an unobservable time-varying

risk premium correlated with the regression residuals. In particular, our approach does not

require to choose a particular parametrization for the risk premium and is thus robust to the

likely misspecification that this choice would entail. More generally, our procedure is robust to

other forms of non-orthogonality between the regressor, the implied volatility proxy, and the

regression residuals.

Consistently with some recent studies (Christensen and Prabhala (1998), Poteshman (2000)

and Chernov (2004), among others), we do find evidence of unbiasedness of implied volatility as

a predictor of realized volatility but interpret the result in terms of presence of a long-run one-

to-one comovement between volatility series. Little can be said about short-term unbiasedness,

option market efficiency and/or validity of a certain option pricing model, which are the focus

of much existing work on the subject.

This paper discusses an instance where the persistence of volatility measures, which is

a stylized fact based on our results and much previous work, plays a role in modifying our

interpretation and understanding of a well-established economic relation while forcing us to

employ appropriate econometric methodologies. More generally, we believe that the persistence

of volatility measures should be given more care any time a notion of volatility is employed as

a dependent or independent variable in forecasting, as often the case in the empirical finance

literature (the study of the risk-return trade-off is a well-known example). Any approach used

must be able to capture persistence and account for its implications. This is what our focus

on long memory and fractional cointegration accomplishes.
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Table 1. Descriptive statistics

Mean Std. dev. Skewness Kurtosis

Implied volatility (σBS) .1793 .0608 .89 3.97
Realized volatility (σR) .1606 .0741 1.21 4.35

The table reports descriptive statistics for the realized and implied volatility series for the S&P 100 index
and the VIX (the CBOE Market Volatility Index) from January 1988 to October 2003 (191 monthly
non-overlapping observations). We report mean, standard deviation, skewness, and kurtosis for both
volatility measures. The skewness and kurtosis coefficients are computed after studentizing the relevant

quantity, say θ, as tθ =
(θt−θ)
σ(θ) , where σ (θ) is the standard deviation of θ. The two coefficients are

equal to 1
n−1

P
t3θ and

1
n−1

P
t4θ, respectively.

Table 2. Empirical results - Estimates of d
S&P 100 index and the VIX

d̂ (implied) d̂ (realized) d̂ (common) d̂ (differences)
GPH Whittle GPH Whittle GPH Whittle GPH Whittle

m =
£
n0.5

¤
= 13 .636 .642 .425 .473 .530 .433 .070 -.015

(.243) (.139) (.243) (.139) (.172) (.098) (.243) (.139)£
n0.6

¤
= 23 .437 .518 .388 .445 .412 .374 .074 .003

(.167) (.104) (.167) (.104) (.118) (.074) (.167) (.104)£
n0.7

¤
= 39 .519 .521 .392 .443 .455 .370 .001 -.032

(.122) (.080) (.122) (.080) (.086) (.057) (.122) (.080)

The table reports long memory parameter estimates for both implied volatility and realized volatility
using the Geweke-Porter-Hudak (GPH) estimator and the local Whittle estimator. The number of

Fourier frequencies used is equal to the integer part of n0.5, n0.6, and n0.7. We also report estimates
based on joint estimation using the multivariate constrained GPH estimator suggested by Robinson
(1995a) and the multivariate local Whittle estimator suggested by Lobato (1999). The last two columns

report long memory parameter estimates for the differences σR − σBS . Standard deviations are in
parenthesis underneath.
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Table 3. Empirical results - Estimates of d
S&P 100 index and S&P 100 options

d̂ (implied) d̂ (realized) d̂ (common) d̂ (differences)
GPH Whittle GPH Whittle GPH Whittle GPH Whittle

m =
£
n0.5

¤
= 9 .770 .666 .545 .485 .657 .349 -.437 -.393

(.318) (.167) (.318) (.167) (.225) (.118) (.318) (.167)£
n0.6

¤
= 14 .678 .619 .634 .644 .656 .461 -.045 -.185

(.233) (.134) (.233) (.134) (.165) (.095) (.233) (.134)£
n0.7

¤
= 23 .715 .566 .573 .580 .644 .475 .090 .061

(.171) (.104) (.171) (.104) (.121) (.074) (.171) (.104)

Note: see Table 2

Table 4. Empirical results - Estimates of d
Deutschemark-Dollar futures

d̂ (implied) d̂ (realized) d̂ (common) d̂ (differences)
GPH Whittle GPH Whittle GPH Whittle GPH Whittle

m =
£
n0.5

¤
= 10 .660 .546 .598 .527 .629 .517 .404 .455

(.293) (.158) (.293) (.158) (.207) (.112) (.293) (.158)£
n0.6

¤
= 16 .530 .499 .627 .589 .579 .446 .273 .324

(.213) (.125) (.213) (.125) (.150) (.088) (.213) (.125)£
n0.7

¤
= 26 .604 .561 .549 .394 .576 .360 .098 .031

(.158) (.098) (.158) (.098) (.111) (.069) (.158) (.098)

Note: see Table 2.
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Table 5. Simulation results - long memory parameter

d̂ (implied) d̂ (realized) d̂ (common)
without error with error without error with error

GPH Whittle GPH Whittle GPH Whittle GPH Whittle GPH Whittle

m =
£
n0.5

¤
.685 .671 .566 .540 .609 .594 .647 .375 .656 .350
(.266) (.232) (.235) (.201) (.258) (.225) (.250) (.175) (.268) (.170)

m =
£
n0.6

¤
.838 .842 .562 .544 .642 .632 .740 .494 .748 .415
(.194) (.173) (.145) (.110) (.179) (.146) (.173) (.135) (.177) (.114)

m =
£
n0.7

¤
.965 .976 .504 .482 .598 .578 .782 .612 .786 .430
(.146) (.132) (.096) (.068) (.130) (.103) (.123) (.112) (.123) (.076)

The table reports long memory parameter estimates for both implied volatility and realized volatility
using the Geweke-Porter-Hudak (GPH) estimator and the local Whittle estimator. The number of

Fourier frequencies used is equal to the integer part of n0.5, n0.6, and n0.7. We also report estimates
based on joint estimation using the multivariate constrained GPH estimator suggested by Robinson
(1995a) and the multivariate local Whittle estimator suggested by Lobato (1999). The table contains
the means of the estimates across simulations (with standard deviations in parenthesis underneath).
The true parameter is d = 0.34.

33



Table 6. Simulation results - cointegration relation

without error with error

α β α β

OLS -.011 1.059 .087 .531
(.014) (.077) (.017) (.057)

m =
£
n0.25

¤
= 3 -.015 1.082 -.006 1.033

(.019) (.104) (.027) (.144)
[66.1] [64.7] {35.1− 90.3} [77.2] [74.6] {32.7− 58.7}

m =
£
n0.4

¤
= 8 -.014 1.079 .003 .988

(.015) (.084) (.020) (.108)
[67.0] [66.7] {51.7− 91.1} [89.9] [89.4] {37.7− 61.5}

NBLS m =
£
n0.5

¤
= 13 -.014 1.077 .011 .944

(.015) (.081) (.018) (.098)
[67.9] [66.4] {48.2− 91.7} [91.9] [93.1] {36.9− 65.6}

m =
£
n0.6

¤
= 23 -.013 1.073 .026 .862

(.014) (.079) (.017) (.085)
[63.3] [61.9] {53.2− 92.1} [79.0] [81.0] {24.6− 77.6}

m =
£
n0.7

¤
= 39 -.013 1.069 .045 .757

(.014) (.078) (.016) (.076)
[60.0] [59.9] {55.6− 91.9} [47.9] [52.0] {4.4− 88.6}

m =
£
n0.8

¤
= 66 -.012 1.064 .069 .627

(.014) (.078) (.016) (.065)
[59.6] [60.1] {58.7− 92.5} [12.5] [13.9] {0.0− 94.3}

The table reports simulation results from running a linear regression between realized volatility and
implied volatility. We estimate the model by OLS and NBLS with a number of Fourier frequencies equal
to the integer part of n0.25, n0.4, n0.5, n0.6, n0.7 and n0.8. We report the means of the estimates across
simulations (with standard deviations in parenthesis underneath). We also report the frequency that
a 95% confidence interval computed using subsampling (in square bracket) and Christensen-Nielsen’s
theory (in braces) includes 1.14. Note that Christensen-Nielsen’s theory is only available for the slope
parameter. To implement Christensen and Nielsen’s asymptotic theory we estimate the long memory dx
and dε parameters with GPH and a bandwidth of

£
n.7
¤
. The second number in braces is the percentage

of replications for which Christensen and Nielsen’s variance could not be computed because the condition

d̂x+ d̂ε < 1/2 (which is necessary to obtain a positive asymptotic variance in Christensen and Nielsen’s
framework) was violated. Christensen and Nielsen’s coverage rates are obtained by excluding those
replications.
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Table 7. Empirical results
S&P 100 index and the VIX

NBLS bandwidth m = 3 10 15 40 95 (OLS)

NBLS point estimate 1.044 1.035 1.037 0.979 0.925

Subsampling 95% CIs

Block size = 33
¡£
n2/3

¤¢
[.823, 1.172] [.814, 1.160] [.819, 1.161] [.858, 1.107] [.877, 1.197]

51
¡£
n3/4

¤¢
[.968, 1.183] [.956, 1.170] [.909, 1.195] [.912, 1.130] [.931, 1.191]

Asymptotic 95% CIs

Bandwidth for estimating

dx and dε£
n0.5

¤
h1.035, 1.042i h1.017, 1.031i h1.013, 1.032i h.905, .963i h.766, .890ibdx = .530 bdε = -.016 .002 -.002 .101 .157£

n0.6
¤

{.973, 1.114} {.965, 1.105} {.972, 1.103} - -bdx = .412 bdε = .005 .018 .015 .105 .176£
n0.7

¤
{1.007, 1.081} {.997, 1.074} {.999, 1.076} {.917, 1.041} -bdx = .455 bdε = -.042 -.033 -.035 .019 .059

The table reports results from running a linear regression between realized volatility and implied volatil-
ity. We estimate the model by OLS and NBLS with various bandwidth choices. We report the point
estimates in the first row. The other rows report 95% confidence intervals. The intervals in square

brackets are based on subsampling with subsamples of size
£
n2/3

¤
and

£
n3/4

¤
. For each bandwidth

choice for estimating dx and dε, we also report intervals based on either Christensen-Nielsen’s theory
(in braces when d̂x < .5) or Robinson-Marinucci’s theory (in angled brackets when d̂x > .5). Some

cells are empty (with the symbol - being used) when, despite the fact that d̂x < .5, the condition

d̂x + d̂ε < .5 is violated. This condition is necessary for the limiting variance of Christensen-Nielsen’s
distribution to be non-negative.
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Table 8. Empirical results
S&P 100 index and S&P 100 options

NBLS bandwidth m = 3 10 15 40 44 (OLS)

NBLS point estimate .888 .909 .870 .702 .696

Subsampling 95% CIs

Block size = 19
¡£
n2/3

¤¢
[.794, 1.230] [.821, 1.254] [.774, 1.115] [.606, .965] [.640, .941]

28
¡£
n3/4

¤¢
[.817, 1.163] [.860, 1.163] [.811, 1.049] [.592, .903] [.605, .893]

Asymptotic 95% CIs

Bandwidth for estimating

dx and dε£
n.5
¤

h.891, .905i h.915, .944i h.877, .915i h.705, .721i h.698, .708ibdx = .657 bdε = -.281 -.316 -.253 -.125 -.123£
n.6
¤

h.911, 1.024i h.938, 1.091i h.905, 1.087i h.728, .860i h.719, .841ibdx = .656 bdε = .074 .048 .095 .210 .212£
n.7
¤

h.927, 1.137i h.958, 1.215i h.922, 1.201i h.740, .937i h.733, .907ibdx = .644 bdε = .172 .154 .186 .264 .266

Note: see Table 7.
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Table 9. Empirical results
Deutschemark-Dollar futures

NBLS bandwidth m = 3 10 15 40 53 (OLS)

NBLS point estimate 1.070 1.118 1.038 .872 .767

Subsampling 95% CIs

Block size = 22
¡£
n2/3

¤¢
[.195, 1.390] [.552, 1.347] [.744, 1.192] [.829, 1.017] [.715, .927]

33
¡£
n3/4

¤¢
[.863, 1.450] [1.002, 1.375] [.983, 1.210] [.851, 1.020] [.762, .933]

Asymptotic 95% CIs

Bandwidth for estimating

dx and dε£
n.5
¤

h.111, .893i h.403, 1.001i h−.037, .858i h.600, .824i h.771, .796ibdx = .629 bdε = .424 .469 .411 .416 .441£
n.6
¤

h1.086, 1.149i h1.139, 1.228i h1.060, 1.145i h.894, .983i h.877, 1.312ibdx = .579 bdε = .226 .199 .247 .361 .425£
n.7
¤

h1.070, 1.072i h1.122, 1.138i h1.032, 1.037i h.776, .852i h.563, .723ibdx = .576 bdε = .044 .005 .069 .186 .248

Note: see Table 7.
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Appendix

These simulations are designed to better understand the properties of NBLS. Specifically, we wish
to re-create an environment where (1) the slope of the fractional cointegrating regression is known and
(2) the underlying shocks ut have different persistence properties. Both features are important but
cannot be considered in the context of the option simulations in the main text. In that case, in fact,
the true slope of the fractional cointegrating regression can only be approximated (as in CCR (2003)
and Chernov (2004), for example) but is unknown in practise. In addition, simulating using shocks (the
Vt’s in the main text) with different properties would take us outside of the realm of realistic processes
for the underlying, i.e., Vt is known to be highly persistent. We simulate the following DGP:

yt = x
∗
t + εt,

x∗t = (1− L)−d ut; ut = ρut−1 + v,µ
εt
vt

¶
∼ iidN (0, I2) ,

d = 0.34,

Case 1: xt = x
∗
t (no measurement error)

Case 2: xt = x
∗
t + σ (x∗t ) ηt; ηt ∼ iidN (0, 1) (measurement error).

Our main findings from the simulations in this Appendix are:

[1] Without serial correlation in the ut’s and measurement error, both the GPH and the local Whittle
estimator of d are nearly unbiased. The local Whittle estimator is always more efficient. The
presence of measurement error lowers the estimates of d relative to the same case without error.
Similarly, estimation of d using the regressand produces d estimates that are lower than those
obtained by using the regressor without error. This is because the regression errors εt play the
same role as classical measurement error.

[2] Serial correlation in the ut’s biases the estimates of d upwards dramatically. Whittle is a little
less biased and more efficient than GPH.

[3] Contrary to the univariate estimators, joint estimation is almost not affected by measurement
error. Joint GPH estimation does not lead to substantial efficiency gains. Joint Whittle leads to
downward biased estimates.

[4] Without measurement error, all slope and intercept estimators are unbiased. Precision improves
with the number of Fourier frequencies in the regression (OLS tends to be the estimator with the
smallest variance).

[5] The presence of measurement error induces a negative relation between the number of Fourier
frequencies and the point estimates (OLS is the most biased estimator). NBLS removes some,
but not all, of the downward bias. Estimation is less precise than without measurement error.

[6] With serial correlation in the underlying ut’s, the slope estimators tend to be more precise
without much effect on their bias while the intercept estimators are biased. The presence of both
measurement error and serial correlation makes the intercept estimators highly biased and less
precise as we increase the number of Fourier frequencies in the regression.

[7] Overall, the subsampling intervals provide the most robust inference across the four cases. The
presence of serial correlation has little effect on them, but the presence of measurement error
deteriorates their coverage rate, especially for larger bandwidths since they do not fully capture
the bias in the estimator.

[8] Christensen and Nielsen’s asymptotic intervals perform best in the simplest case (no serial correla-
tion, no measurement error). With serial correlation, the intervals can almost never be computed
because of the upward bias in the estimation of d.
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Table A1. Simulation results for the regression model - long-memory parameter

d̂x d̂y d̂ (common)
without error with error without error with error

GPH Whittle GPH Whittle GPH Whittle GPH Whittle GPH Whittle

ρ = 0

m =
£
n0.5

¤
.355 .324 .265 .237 .280 .251 .312 .181 .319 .158

(.240) (.209) (.242) (.199) (.234) (.202) (.216) (.152) (.226) (.147)

m =
£
n0.6

¤
.349 .328 .242 .224 .263 .241 .306 .189 .307 .157

(166) (.141) (.162) (.133) (.166) (.136) (.152) (.105) (.156) (.100)

m =
£
n0.7

¤
.348 .328 .220 .206 .241 .223 .295 .195 .294 .150

(.118) (.096) (.116) (.092) (.120) (.095) (.107) (.075) (.108) (.071)

ρ = 0.95

m =
£
n0.5

¤
1.057 1.065 .772 .756 1.046 1.052 1.052 .662 1.079 .660

(.244) (.208) (.201) (.158) (.249) (.206) (.244) (.191) (.258) (.193)

m =
£
n0.6

¤
1.132 1.138 .638 .625 1.091 1.094 1.112 .766 1.130 .744

(.178) (.146) (.124) (.089) (.177) (.144) (.173) (.139) (.176) (.135)

m =
£
n0.7

¤
1.171 1.164 .500 .496 1.068 1.049 1.120 .832 1.130 .766

(.141) (.113) (.095) (.057) (.128) (.101) (.128) (.107) (.128) (.100)

The table reports long memory parameter estimates for both regressor and regressand using the
Geweke-Porter-Hudak (GPH) estimator and the local Whittle estimator. The number of Fourier fre-

quencies used is equal to the integer part of n0.5, n0.6, and n0.7. We also report estimates based on joint
estimation using the multivariate constrained GPH estimator suggested by Robinson (1995a) and the
multivariate local Whittle estimator suggested by Lobato (1999). The table contains the means of the
estimates across simulations (with standard deviations in parenthesis underneath). The true parameter
is d = 0.34.
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Table A2. Simulation results for the regression model - regression estimates

without measurement error (ηt = 0) with measurement error (ηt ∼ N (0, 1))

α β α β

OLS -.000 .998 -.007 .501

(.075) (.065) (.204) (.055)

m =
£
n0.25

¤
= 3 .002 1.005 -.005 .857

(.099) (.192) (.144) (.245)
ρ = 0 [81.5] [77.3] {77.7− 9.5} [79.1] [74.6] {75.6− 4.7}

m =
£
n0.4

¤
= 8 .001 .996 -.004 .788

(.085) (.130) (.135) (.152)
[85.9] [86.5] {84.1− 9.3} [83.3] [77.4] {62.0− 5.4}

NBLS m =
£
n0.5

¤
= 13 .001 .995 -.005 .745

(.082) (.112) (.141) (.126)
[86.4] [90.0] {86.1− 9.4} [81.2] [68.0] {43.8− 5.5}

m =
£
n0.7

¤
= 39 .000 .995 -.006 .617

(.078) (.084) (.171) (.081)
[81.4] [81.8] {88.2− 10.8} [69.3] [3.3] {5.0− 12.7}

-.002 1.000 -.064 .502

OLS (.099) (.011) (3.395) (.028)

m =
£
n0.25

¤
= 3 -.001 1.001 -.004 .976

(.107) (.014) (.778) (.081)
ρ = .95 [88.2] [87.0] {100.0− 99.9} [85.6] [84.3] {87.0− 94.6}

m =
£
n0.4

¤
= 8 -.002 1.000 .001 .930

(, 101) (.012) (.836) (.065)
[90.6] [91.2] {100.0− 99.9} [93.1] [94.8] {88.9− 95.6}

NBLS m =
£
n0.5

¤
= 13 -.002 1.000 -.005 .887

(.099) (.012) (1.002) (.058)
[91.1] [91.6] {100.0− 99.9} [91.8] [91.6] {78.3− 97.7}

m =
£
n0.7

¤
= 39 -.002 1.000 -.037 .713

(.099) (.012) (2.010) (.040)
[89.1] [87.8] {100.0− 99.9} [85.0] [64.3] {0.0− 99.9}
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The table reports simulation results from running a linear regression between yt and xt. We estimate
the model by OLS and NBLS with a number of Fourier frequencies between

£
n0.25

¤
and

£
n0.7

¤
. We

report the means of the estimates (with standard deviations in parenthesis underneath). We also report
the frequency that a 95% confidence interval computed using subsampling (in square bracket) and
Christensen-Nielsen’s theory (in braces), includes the true slope of 1. Note that Christensen-Nielsen’s
theory is only available for the slope parameter. To implement Christensen and Nielsen’s asymptotic
theory we estimate the long memory dx and dε parameters with GPH and a bandwidth of

£
n.7
¤
. The

second number in braces is the percentage of replications for which Christensen and Nielsen’s variance

could not be computed because the condition d̂x + d̂ε < 1/2 (which is necessary to obtain a positive
asymptotic variance in Christensen and Nielsen’s framework) was violated. Christensen and Nielsen’s
coverage rates are obtained by excluding those replications.
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