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1. INTRODUCTION

There has been much recent interest in testing for the presence of stochastic trends
in large panels (e.g., see Breitung and Pesaran (2008) and Breitung and Westerlund
(2013)). A prototypical model consists of a deterministic trend compon ent dit and an
(unobserved) stochastic component component yit for some observable panel observations
zit for individual i = 1, ..., n in period t = 1, ..., T satisfying

zit = dit + yit, (1.1)

yit = ρiyit−1 + uit,

where uit is an error term that has zero mean and is stationary over time and yi0 = 0 for
simplicity. Dynamic panel models with incidental trend components of this type arise in
many applications in microeconometrics, multi-country growth studies, and international
finance. Empirical interest often centers on the individual dynamics and whether there is
commonality and persistence across individuals, i.e. that the autoregressive parameters
ρi are all unity, or whether such commonality occurs for certain subgroups of individuals.
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Moon, Perron, and Phillips (2007, MPP thereafter) developed tests that are point
optimal against a specific alternative hypothesis. MPP adopted a local-alternative setup,
specifying the autoregressive parameter as lying in a local vicinity of unity whose width
narrows as the sample size increases according to the form

ρi = 1− θi
nκT

for some constant κ > 0, (1.2)

where θi is a sequence of iid random variables and κ is a parameter defining the width
of the vicinity as n→∞. The null hypothesis of interest is then

H0 : θi = 0 a.s. (i.e., ρi = 1) for all i, (1.3)

with the alternative

H1 : θi 6= 0 (i.e., ρi 6= 1) for some i′s. (1.4)

The MPP tests are point optimal in the sense of giving highest power against a specific
set of θ′is. These tests were derived under the assumption that the error term uit is
independent across individual units and over time. They represent a panel extension of
the work of Elliott et al. (1996) in the time series case where the autoregressive parameter
converges to unity at a rate of 1

T regardless of the deterministic component in the model.
Independence assumptions are not realistic in many empirical applications and the

current work extends the MPP tests by allowing for serially correlated errors uit. Section
6.4 (p. 436) of MPP briefly mentioned this extension. Here we provide explicit test
statistics that have optimal asymptotic properties. The modified tests replace estimated
variances of the errors in MPP with estimated long-run variances and adjust centering
terms. Our main purpose is to provide the form of the modified tests and give their
asymptotic properties so that they may be used in empirical work.

The paper is organized as follows. Section 2 shows how to construct the tests, gives
results for cases with no fixed effects, fixed effects and incidental trends, and discusses
implementation. Section 3 reports some simulations findings, Section 4 concludes, and
the Appendix provides technical derivations and supporting lemmas.

2. TESTS UNDER SERIAL CORRELATION

Following MPP, the analysis below considers three deterministic trend cases: (i) no in-
dividual effects, that is, dit = 0 and zit = yit; (ii) fixed effects, i.e., dit = b0i; and (iii)
heterogenous or incidental linear trends, i.e., dit = bi0 + bi1 (t− 1). In each case, we
proceed in three steps. We first define the likelihood ratio (LR) statistic under Gaus-
sianity, which is known to be optimal by the Neyman-Pearson lemma when the null and
alternative hypotheses are simple. We then show that this statistic can be approximated
by a simpler version with parameters that are consistently estimable. We finally derive
the asymptotic distribution of this approximation (with appropriate recentering). In all
three cases, this asymptotic distribution coincides with the one in MPP.

Our notation is similar to MPP. Denote by Z, D, Y, Y−1, and U the (n× T ) observation

matrices whose (i, t)
th

elements are zit, dit, yit, yit−1, and uit, respectively. Define the T−
vectors G0 = (1, ...., 1)

′
, G1 = (0, 1, ..., T − 1)

′
, set G = (G0, G1) = (g1, ..., gT )

′
, where

gt = (1, t− 1)
′
. Define β0 = (b01, ...., b0n)

′
, β1 = (b11, ...., b1n)

′
, and β = (β0, β1) =

(b1, ..., bn)
′
, where bi = (b0i, b1i)

′
. Let Zi, Y i, Y −1,i, and U i denote the transpose of the

ith row of Z, Y, Y−1, and U, respectively. With this notation, the model has the matrix

c© Royal Economic Society 2014



Point Optimal Panel Unit Root Tests with Serially Correlated Errors 3

form

Z = D + Y, Y = ρY−1 + U,

where ρ = diag (ρ1, ..., ρn) .
Define σ2

i , ω
2
i , and λi as the variance of uit, the long-run variance of uit and the one-

sided long-run variance of uit, respectively, so that ω2
i = σ2

i + 2λi. Let Σ, Ω, and Λ be
the diagonal matrices with elements σ2

i , ω
2
i , and λi, respectively. Define Ωu,i = E[U iU

′
i],

the (T × T ) covariance matrix of U i, and Ωu = diag (Ωu,1, ...,Ωu,n) , the (nT × nT )
covariance matrix of vec (U ′) . As in MPP, we assume that the errors uit are cross section
independent over i.

We assume that the localizing coefficient θi in the local alternative (1.2) is a sequence
of iid random variables with bounded support.1 Let µθ,k = E[θki ], ρci = 1 − ci

nκT , and
define the quasi-difference operator

∆ci
(T×T )

=



1 0 . . . 0 0

−ρci 1
. . .

...
...

0
. . .

. . . 0 0
... −ρci 1 0
0 . . . 0 −ρci 1


.

Set C = diag (c1, ..., cn) and ∆C = diag (∆c1 , ...,∆cn) .
The quasi log-likelihood function of the panel Z that we use in defining the likelihood

ratio test statistic has the form

LnT (C, D,B) = −1

2
(vec (Z ′ −D′))′∆′CB∆C (vec (Z ′ −D′)) ,

for some weight matrix B.
Through the paper we will assume panel linear process errors with conditions similar

to those in the literature (e.g., Phillips and Moon, 1999).

Condition 2.1. (a) Assume uit =
∑∞
j=0 cijvit−j , where vit ∼ iid with E[vit] = 0 and

E |vit|8+ε < ∞ for some ε > 0. Let cj = supi |cij | . (b) Assume
∑∞
j=0 j

mcj < ∞ for

some m > 1 Let fi (λ) be the spectral density of uit. Let γj (k) =
∫ π
−π exp (ik) fj (λ) dλ,

γ (k) = supi |γi (k)| , φj (k) =
∫ π
−π exp (ik)

(
4π2fj (λ)

)−1
dλ, φ (k) = supi |φi (k)| (c)

Assume γ (k) , φ (k) ≤Mk−s and for s > 2 and some constant M.

These conditions extend the serial dependence restrictions of Elliott et al (1996) (e.g.,
Condition A) to heterogeneous panels. Condition (a) assumes that the error term uit
follows a linear process that is heterogeneous across i. The higher moments are needed
to ensure the large N,T asymptotics of panel data that are heterogeneous across i and
serially correlated over t. Under cross-sectional homoskedasticity, these moment condi-
tions could be weakened. Conditions (b) and (c) restrict the temporal dependence of the
error term uit to be ’weak’ uniformly across i. These restrictions exclude long memory

1As mentioned in MPP, the assumption of a bounded support for θi is made for convenience, and could
be relaxed at the cost of stronger moment conditions. It is also convenient to assume that the θi are
identically distributed, and this assumption could be relaxed as long as cross sectional averages of the
moments θi have well defined limits.
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type strong dependence. The conditions in (2.1) are quite weak and are satisfied by many
parametric weak dependent process such as stationary and invertible ARMA processes.

While Condition 2.1 is quite general in terms of the serial correlation that is allowed,
it is restrictive in that it assumes that all cross-sectional units are independent. This as-
sumption is not reasonable for many interesting empirical data sets such as cross-country
studies where business cycle effects are likely to induce correlation across countries. As
in MPP, we conjecture that the procedures proposed below are valid after appropriate
orthogonalization is applied, for example, after the removal of common factors as in
Moon and Perron (2004), Bai and Ng (2004) or Phillips and Sul (2003)). Moreover, the
development of optimal procedures under cross-sectional dependence is beyond the scope
of the current paper.

2.1. No Fixed Effect: dit = 0

When dit = 0, the model becomes

Z = Y, Y = ρY−1 + U.

Following MPP, in this case we consider local neighborhoods of unity that shrink at the
rate of 1

n1/2T
, so that the rate coefficient κ = 1/2, and one-sided alternatives in which

the support of θi is a bounded interval [0,Mθ] for some Mθ ≥ 0 so that ρi ≤ 1 under this
alternative. In terms of the first moment of θi the hypotheses about ρi are as follows:

H0 : µθ,1 = 0, (2.1)

and

H1 : µθ,1 > 0. (2.2)

Suppose that uit are Gaussian so that vec (U ′) ∼ N (0,Ωu) with known Ωu and the
initial conditions yi0 are all zeros 2. By the Neyman-Pearson lemma, rejecting a small
value of the log-likelihood ratio test statistic

−2LnT
(
C, 0,Ω−1u

)
+ 2LnT

(
0, 0,Ω−1u

)
(2.3)

would be the uniformly most powerful test for the null ρi = 1 for i = 1, ..., n against the
simple alternative ρi = 1− ci

n1/2T
for i = 1, ..., n. When the alternative is (1.4) with (2.2) ,

this becomes a point optimal test.
In order to implement the optimal test statistic (2.3) , one needs an estimate of the

entire (nT × nT ) covariance matrix Ωu. This is a huge high dimensional covariance esti-
mation problem in a nonparametric set-up. The following theorem provides an approxi-
mation of the likelihood ratio test statistic in (2.3) with a statistic where the unknown
nuisance parameters are consistently estimable.

Theorem 2.1. Assume Condition 2.1 with E[vec (U ′) vec (U ′)
′
] = Ωu. Assume that

2This assumption of a zero initial value is strong. The treatment of initial values in panel unit root
tests is still an open problem. In MPP (2007), we showed that assuming that the initial observation is
drawn from the unconditional distribution cannot be easily extended to the panel case as the resulting
test statistic diverges to infinity with probability 1.

c© Royal Economic Society 2014
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n
T → 0 as n, T →∞. Then, for ρi = 1− θi

n1/2T
, we have

−2LnT
(
C, 0,Ω−1u

)
+ 2LnT

(
0, 0,Ω−1u

)
= −2LnT

(
C, 0,Ω−1 ⊗ IT

)
+ 2LnT

(
0, 0,Ω−1 ⊗ IT

)
− 2

n1/2
l′nCΩ−1Λln + op (1) .

Notice that the approximate likelihood ratio statistic

−2LnT
(
C, 0,Ω−1 ⊗ IT

)
+ 2LnT

(
0, 0,Ω−1 ⊗ IT

)
− 2

n1/2
l′nCΩ−1Λln (2.4)

in Theorem 2.1 employs the Gaussian log-likelihood based on the long-run variance Ω⊗IT
with an adjustment of the one-sided long run variance 2

n1/2 l
′
nCΩ−1Λln. The one-sided

long run drift correction appears due to the correlation between the stationary error uit
and the lagged dependent variable zit−1 = yit−1. The main advantage of this formulation
is that it involves quantities (Ω and Λ) that can be estimated consistently.

The test statistic we propose is to use the approximated log likelihood ratio (2.4) with
appropriate centering. Define

VnT (C) = −2LnT
(
C, 0,Ω−1 ⊗ IT

)
+ 2LnT

(
0, 0,Ω−1 ⊗ IT

)
− 1

2
µc,2 −

2√
n
l′nCΩ−1Λln,

ln = (1, ..., 1) is the sum vector and µc,2 = E[c2i ].

Theorem 2.2. Let Condition 2.1 hold and n
T → 0 as n, T → ∞. Then, under the local

alternative ρi = 1− θi
n1/2T

, we have

VnT (C)⇒ N (−E[ciθi], 2µc,2) ,

where µc,2 = E[c2i ].

Remark 2.1. One can interpret the test statistic VnT (C) as an asymptotic version of
the point optimal test for panel unit roots with possible serial correlation of unknown
form in the error term.

Remark 2.2. Compared to the corresponding statistic in MPP which makes no al-
lowance for serial correlation, there are two differences in VnT (C) . First, as discussed
in MPP, we use the long-run covariance matrix Ω ⊗ IT instead of the variance matrix
Σ ⊗ IT as the weight matrix. In addition, we recenter the statistic by subtracting the
term 2√

n
l′nCΩ−1Λln, which corrects for the correlation between the stationary error uit

and the lagged dependent variable zit−1 = yit−1. This term is not required for the test
under temporal independence.

Remark 2.3. The limit distribution of VnT (C) is the same limit as in MPP (Theorem
6).

2.2. Time Invariant Fixed Effects: dit = bi0

In this section we consider the case where the incidental trends dit = b0i are fixed over
time. This corresponds to the standard fixed effects model. In this case, the model has
matrix form

Z = β0G
′
0 + Y, Y = ρY−1 + U.

c© Royal Economic Society 2014



6 H.R.Moon, B. Perron, and P.C.B. Phillips

As before, suppose that vec (U ′) ∼ N (0,Ωu) with known Ωu and the initial conditions
yi0 are all zeros. Then, rejecting a small value of the test statistic,

−2

[
min
β0

LnT
(
C, β0G′0,Ω−1u

)
−min

β0

LnT
(
0, β0G

′
0,Ω

−1
u

)]
, (2.5)

for the null ρi = 1 for i = 1, ..., n and the alternative ρi = 1 − ci
n1/2T

for i = 1, ..., n, is
known as the uniformly most powerful invariant test that is invariant with respect to the
transformation Z → Z + β∗0G

′
0 for arbitrary β∗0 . Against the alternative in (1.4) , this

becomes a point optimal invariant test (e.g., Dufour and King(1991)).
As mentioned in the previous section, this statistic is difficult to implement due to the

presence of Ωu, the full (nT × nT ) covariance matrix of the error. This again motivates
the use of an approximation.

Theorem 2.3. Assume Condition 2.1 with E[vec (U ′) vec (U ′)
′
] = Ωu and let n

T 1/2 → 0

as n, T →∞. Then, for ρi = 1− θi
n1/2T

, we have

−2

[
min
β0

LnT
(
C, β0G′0,Ω−1u

)
−min

β0

LnT
(
0, β0G

′
0,Ω

−1
u

)]
= −2

[
min
β0

LnT
(
C, β0G′0,Ω−1 ⊗ IT

)
−min

β0

LnT
(
0, β0G

′
0,Ω

−1 ⊗ IT
)]

− 2

n1/2
l′nCΩ−1Λln + op (1) .

Remark 2.4. This approximation is derived under the stronger rate condition n
T 1/2 → 0

as n, T → ∞ in place of the condition n
T → 0 as n, T → ∞ that is used without fixed

effects.

Remark 2.5. The approximation involves the same correction for second-order bias as
in the case without fixed effects.

Again, the test statistic we propose is the approximate log likelihood ratio (2.4) with
appropriate centering. Define

VnT,fe1 (C) = −2

[
min
β0

LnT
(
C, β0G′0,Ω−1 ⊗ IT

)
−min

β0

LnT
(
0, β0G

′
0,Ω

−1 ⊗ IT
)]

−1

2
µc,2 −

2√
n
l′nCΩ−1Λln.

Theorem 2.4. Assume Condition 2.1 holds and let n
T → 0 as n, T → ∞. Then, under

the local alternative ρi = 1− θi
n1/2T

, we have

VnT,fe1 (C)⇒ N (−E[ciθi], 2µc,2) ,

where µc,2 = E[c2i ].

This asymptotic distribution is the same as without fixed effects and as in MPP (The-
orem 9).

c© Royal Economic Society 2014
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2.3. Incidental Trends: dit = bi0 + bi1t

Under heterogeneous linear trends we follow MPP and use local neighborhoods of unity
that shrink at the slower rate of 1

n1/4T
, so that the rate coefficient is κ = 1/4. The

alternative may be two-sided, i.e. θi ∼ iid with mean µθ and variance σ2
θ , with a support

that is a subset of a bounded interval [−Mlθ, Muθ], where Mlθ, Muθ ≥ 0. The slower
rate of shrinkage in the local neighborhoods of unity is the result of the presence of
heterogeneous trend effects in the panel. The presence of these incidental trends reduces
discriminatory power in testing for the presence of common stochastic trends, so wider
localizing intervals are needed to attain non trivial power functions.

Under these conditions, hypotheses (1.3) and (1.4) can be re-expressed as

H0 : µθ,2 = 0, (2.6)

and

H1 : µθ,2 > 0. (2.7)

Again, suppose that vec (U ′) ∼ N (0,Ωu) with known Ωu and the initial conditions yi0
are all zeros. Then, similar to the case of time invariant fixed effects, rejecting a small
value of the test statistic,

−2

[
min
β
LnT

(
C, βG′,Ω−1u

)
−min

β
LnT

(
0, βG′,Ω−1u

)]
,

for the null ρi = 1 for i = 1, ..., n and the alternative ρi = 1 − ci
n1/4T

for i = 1, ..., n, is
known as the uniformly most powerful invariant test (with respect to the linear trans-
formation Z → Z + β∗G′ for arbitrary β∗), and against the alternative in (1.4) , it
becomes a point optimal invariant test. As before, we start by proving the validity of an
approximation to this log-likelihood ratio.

Theorem 2.5. Assume Condition 2.1 with E[vec (U ′) vec (U ′)
′
] = Ωu and let n

T 1/4 → 0

as n, T →∞. Then, for ρi = 1− θi
n1/4T

, we have

−2

[
min
β
LnT

(
C, βG′,Ω−1u

)
−min

β
LnT

(
0, βG′,Ω−1u

)]
= −2

[
min
β
LnT

(
C, βG′,Ω−1 ⊗ IT

)
−min

β
LnT

(
0, βG′,Ω−1 ⊗ IT

)]
− 2

n1/4
l′nCΩ−1Λln + op (1) .

Remark 2.6. This approximation is derived under the condition n
T 1/4 → 0 as n, T →∞,

which is a stronger rate condition than that used for the intercepts case.

Remark 2.7. As before, the correction is due to the presence of a second-order bias
term arising from the correlation between the lagged dependent variables and the error
term.

Again we propose to use the approximate log likelihood ratio with appropriate center-

c© Royal Economic Society 2014



8 H.R.Moon, B. Perron, and P.C.B. Phillips

ing as a test statistic. Define

VnT,fe2 (C) = −2

[
min
β
LnT

(
C, βG′,Ω−1 ⊗ IT

)
−min

β
LnT

(
0, βG′,Ω−1 ⊗ IT

)]
+

1

n1/4
l′nCΩ−1Σln +

1

n1/2
(
l′nC2ln

)
ωp2T +

1

n

(
l′nC4ln

)
ωp4T ,

where

ωp2T = − 1

T

T∑
t=1

t

T
+

2

T

T∑
t=1

(
t

T

)2

− 1

3
,

ωp4T =
1

T 2

T∑
t=1

T∑
s=1

t

T

s

T
min

(
t

T
,
s

T

)
− 2

3

1

T

T∑
t=1

(
t

T

)2

+
1

9
.

Theorem 2.6. Assume Condition 2.1 holds and let n
T → 0 as n, T → ∞. Then, under

the local alternative ρi = 1− θi
n1/4T

, we have

VnT,fe2 (C)⇒ N

(
− 1

90
E[c2i θ

2
i ],

1

45
E[c4i ]

)
.

As before, Vfe2,nT (C) reduces to the statistic from MPP when there is no serial cor-
relation, and it has the same asymptotic distribution as in Theorem 13 of MPP.

2.4. Implementation of the tests

The test statistics VnT (C) , VnT,fe1 (C) , and VnT,fe2 (C) depend on unknown parameters{
σ2
i

}
,
{
ω2
i

}
, and {λi}. Let σ̂2

i , ω̂
2
i , and λ̂i be consistent estimators of σ2

i , ω
2
i , and λi,

respectively. Similarly define the diagonal matrices of these elements as Σ̂, Ω̂, and Λ̂.
To implement these tests, one may replace Σ, Ω, and Λ in VnT (C) , VnT,fe1 (C) , and

VnT,fe2 (C) with Σ̂, Ω̂, and Λ̂, and we denote the test statistics as V̂nT (C) , V̂nT,fe1 (C) ,

and V̂nT,fe2 (C) . We assume the following regarding these estimators.

Condition 2.2. supiE[σ̂2
i − σ2

i ]2 = o
(
1
n

)
, supiE[ω̂2

i − ω2
i ]2 = o

(
1
n

)
, and supiE[λ̂2i −

λ2i ]
2 = o

(
1
n

)
under the local alternative.

Remark 2.8. An example of σ̂2
i that satisfies Condition 2.2 is the time series sample

variance of ∆zit :

σ̂2
i =

1

T − 1

T∑
t=2

(
∆zit −

(
1

T − 1

T∑
t=2

∆zit

))2

.

Remark 2.9. When kernel spectral density estimation is used for ω̂2
i and λ̂2i with band-

width h, Condition 2.2 is satisfied if: (i) the kernel function K (·) : R→ [0, 1] is continuous
at zero and all but a finite number of other points, satisfying K (0) = 1, K (x) = K (−x) ,∫∞
−∞K (x)

2
dx < M, and Kq = limx→0 [1−K (x) / |x|q] <∞ for some 0 < q ≤ m, where

c© Royal Economic Society 2014



Point Optimal Panel Unit Root Tests with Serially Correlated Errors 9

parameter m is defined in Condition 2.1(b); and (ii) the bandwidth h satisfies

nh

T
+

n

h2q
= o (1) (2.8)

as n
T → 0 and h → ∞. (e.g., See Moon and Perron (2004)). If n

T = o (T−a) for some
0 < a < 1 and q ≥ 1

2

(
1−a
a

)
, then the bandwidth condition (2.8) is satisfied if

T
1
2q (1−a) . h . T a,

that is,

h

T a
,
T

1
2q (1−a)

h
= O (1) .

Theorem 2.7. Under Conditions 2.1 and 2.2, as n, T → ∞ with n
T → ∞, we have

V̂nT (C) = VnT (C) + op (1) , V̂nT,fe1 (C) = VnT,fe1 (C) + op (1) , and V̂nT,fe2 (C) =
VnT,fe2 (C) + op (1) under the local alternative.

Implementation of the tests also requires the choice of an alternative to define the
likelihood ratio, C. MPP showed that the optimal choice of ci is θi. With this choice,
the likelihood ratio statistics above attain the power envelope. However, this choice is
infeasible since θi are the parameters under test. MPP proposed to assume a common
ci = c for all cross-sectional units. MPP dubbed this test a common point-optimal (CPO)
test. With this choice, C =cIn, and we can deduce from theorems 2.2, 2.4, and 2.6 that
under the null hypothesis: √

1

2c2
VnT (cIn)⇒ N (0, 1)√

1

2c2
VnT,fe1 (cIn)⇒ N (0, 1)√

45

c4
VnT,fe2 (cIn)⇒ N (0, 1)

while under the alternative hypothesis:√
1

2c2
VnT (cIn)⇒ N

(
− 1√

2
E[θi], 1

)
√

1

2c2
VnT,fe1 (cIn)⇒ N

(
− 1√

2
E[θi], 1

)
√

45

c4
VnT,fe2 (cIn)⇒ N

(
−
√

5

30
E[θ2i ], 1

)
.

The surprising result here is that neither distribution depends on the choice of c used
to construct the test. This feature implies that power is the same for all choices of c
asymptotically, though that choice matters in finite samples. Based on the simulation
evidence provided in MPP, we set c = 1 in the simulation below. Of course, this choice
of C is not optimal unless the alternative hypothesis is homogeneous (θi = θ 6= 0 for all
i) and results in a power loss relative to the power envelope.
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3. MONTE CARLO SIMULATIONS

This section reports the results of a Monte Carlo experiment designed to assess the finite-
sample properties of the tests presented above and compare them with other existing
ones. For this purpose, we use the same DGP as MPP but employ either an AR(1) or
MA(1) process for the innovations so that the generating model has the following form:

zit = b0i + b1it+ yit,

yit = ρiyit−1 + uit,

where the innovations follow either an AR(1) process:

uit = γιuit,t−1 + εit

εit ∼ iid N
(
0, σ2

i

(
1− γ2i

))
or an MA(1) process

uit = ϕiεit−1 + εit

εit ∼ iid N

(
0, σ2

i

(
1

1 + ϕ2
i

))
.

We have also looked at some ARMA(1,1) cases but do not report those results to ease
presentation (these results are available from the authors upon request). We consider
5 specifications for serial correlation: white noise (γi = ϕi = 0), positive AR (ϕi = 0
and γi ∼ U [0, .4]), negative AR (ϕi = 0 and γi ∼ U [−.4, 0]), positive MA (γi = 0 and
ϕi ∼ U [0, .4]), and negative MA (γi = 0 and ϕi ∼ U [−.4, 0]).

In all cases, we allow for heterogeneity and draw the idiosyncratic variance σ2
i from a

uniform distribution, σ2
i ∼ U [0.5, 1.5] . This variance is scaled such that the scale of uit

is the same for all cases. In both the incidental intercepts case (b1i = 0) and incidental
trends case (b1i 6= 0) , the parameters are drawn from iidN (0, 1) .

We focus the study on the size and size-adjusted power of the common point-optimal
test with ci = 1 for all i, as MPP advocated that choice. For size calculations, we set
ρi = 1 for all i,which corresponds to θi = 0 for all i in our local-to-unity framework. For
power, we draw θi from a uniform distribution between 0 and 8 as was done in one of the
experiments in MPP. This specification ensures that power should be roughly constant
as N and T increase.

We draw comparisons with two existing tests, those of Levin et al (2002) and Im et al.
(2003) . We take three values for n (10, 25, and 100) and two values of T (100 and 250).
All tests are conducted at the 5% significance level, and the number of replications is set
at 2,000.

Estimation of the long-run variance and one-sided long run variance is critical to
the performance of the common point optimal test. We estimate these quantities in
two ways based on demeaned first differences as in Remark 2.8. The first method is a
non-parametric estimator with quadratic spectral kernel and bandwidth selected in a
data-based manner using the Andrews (1991) rule with no prewhitening. The second
method uses prewhitening where the appropriate model is chosen using BIC among the
AR(1), MA(1), ARMA(1,1), and constant-only models. In the case of the LLC test, we
follow Levin et al.’s recommendation and use a Bartlett kernel with a bandwidth equal
to 3.21T 1/3. Westerlund (2009) has shown that this choice gives the LLC test higher
power than selecting the bandwidth in a data-dependent way. Similarly, for the IPS and
LLC tests, the choice of lag augmentation is critical for performance. We choose this in
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a data-dependent way by BIC with a maximum of 6 lags. For both of these tests, we use
the finite-sample adjustments provided in the original papers.

The size results are reported in Tables 1 and 3 for the incidental intercepts and trends
cases respectively, while size-adjusted power is in Tables 2 and 4. For each of the 5 serial
correlation specifications, each row corresponds to a different test.

In general, we see that our common point-optimal test is conservative. This is especially
true in the incidental trends case. The test is better behaved without prewhitening in
estimating the long-run variance in the incidental intercepts case, but the reverse is true
in the trends case. It is evident that the original MPP test is not robust to the presence of
serial correlation with size that can be as low as 0 or as high as 1 and that the extensions
proposed here are therefore needed.

Table 2 reports results for size-adjusted power in the intercept case. Size adjustment
is needed given some of the large size distortions reported in Table 1. We see that size-
adjusted power of the common point-optimal tests robust to serial correlation is typically
lower than that of uncorrected test, but the difference gets smaller as N and T increase
as predicted by theory since the tests have the same asymptotic distribution. Also, we
see that these tests have much higher size-adjusted power than either the LLC or IPS
tests. The LLC test has poor power as it corrects for bias by adjusting the numerator of
the pooled OLS estimator as pointed out by Moon and Perron (2008) and Breitung and
Westerlund (2013) 3.

Table 4 presents size-adjusted power for the incidental trends case. Note that the
alternative considered in this scenario is further from the unit root null than in Table 2
due to the different definition of local neighborhoods. While the common point optimal
tests have lower power in this case, the same conclusions as in the intercept case remain.

4. CONCLUSION

This paper develops generalizations of the point-optimal panel unit root tests of Moon,
Perron, and Phillips (2007) to cover the case where the error term is serially correlated.
The resulting statistics have two simple modifications relative to those in MPP. First,
the variance of the errors is replaced by the long-run variance. Second, the centering of
the statistic is adjusted to accommodate the second-order bias induced by the correlation
between the error and lagged values of the dependent variable. Simulations show that
these two adjustments lead to appropriately sized tests in most cases.
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APPENDIX A: PROOFS OF THE APPROXIMATIONS IN THEOREMS 2.1, 2.3,
AND 2.5

The appendix consists of three sections. In the first section we provide proofs of Theorems
2.1, 2.3, and 2.5 that approximate the Gaussian log-likelihood ratio statistic. In the second
section we provide sketches of the proofs of the limit distribution results in Theorems
2.2, 2.4, and 2.6. In the third section, we provide a heuristic proof of Theorem 2.7. We
only provide sketches of the proofs in the last two sections because the details are similar
to those of the corresponding theorems in MPP and can be established with only minor
modifications. Throughout the appendix, M denotes a generic (finite) constant.
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A.1. Proof of Theorem 2.1

Here κ = 1/2. Assume Condition 2.1 and n
T → 0. Since ∆Y i = − θi

nκT Y −1,i +U i, we can
write

−2LnT
(
C, 0,Ω−1u

)
+ 2LnT

(
0, 0,Ω−1u

)
=

n∑
i=1

[(
∆Y i +

ci
nκT

Y −1,i

)′
Ω−1u,i

(
∆Y i +

ci
nκT

Y −1,i

)
− (∆Y i)

′
Ω−1u,i (∆Y i)

]

=
2

nκT

n∑
i=1

ciY
′
−1,iΩ

−1
u,i∆Y i +

1

n2κT 2

n∑
i=1

c2iY
′
−1,iΩ

−1
u,iY −1,i. (A.1)

Write

2

nκT

n∑
i=1

ciY
′
−1,iΩ

−1
u,i∆Y i =

1

nκ

n∑
i=1

ci

[
2

T
Y ′−1,iΩ

−1
u,i∆Y i

]

=
1

nκ

n∑
i=1

ci

[
2

T

Y ′−1,i∆Y i
ω2
i

+
σ2
i

ω2
i

− 1

]
+

1

nκ

n∑
i=1

ηiT

=
2

nκT

n∑
i=1

ci
ω2
i

Y ′−1,i∆Y i −
2

nκ

n∑
i=1

ci
λi
ω2
i

+
1

nκ

n∑
i=1

η1iT , (A.2)

where

η1iT = 2ci

[
1

T
Y ′−1,iΩ

−1
u,i∆Y i −

1

T

Y ′−1,i∆Y i
ω2
i

+
λi
ω2
i

]
,

and

1

n2κT 2

n∑
i=1

c2iY
′
−1,iΩ

−1
u,iY −1,i =

1

n2κT 2

n∑
i=1

c2i
ω2
i

Y ′−1,iY −1,i +
1

n2κ

n∑
i=1

η2iT , (A.3)

where

η2iT = c2i

(
1

T 2
Y ′−1,iΩ

−1
u,iY −1,i −

1

ω2
i T

2
Y ′−1,iY −1,i

)
.

In the following subsections we show that under Condition 2.1, as n
T → 0,

1

n1/4

n∑
i=1

η1iT = op (1) (A.4)

1

n1/2

n∑
i=1

η2iT = op (1) . (A.5)

Then, by (A.1)− (A.5) with κ = 1/2, we deduce that

−2LnT
(
C, 0,Ω−1u

)
+ 2LnT

(
0, 0,Ω−1u

)
= − 2

n1/2T

n∑
i=1

ci
ω2
i

Y ′−1,i∆Y i +
1

nT 2

n∑
i=1

ci
ω2
i

Y ′−1,iY −1,i −
2

n1/2

n∑
i=1

ci
λi
ω2
i

+ op (1)

= −2LnT (C, 0,Ω⊗ IT ) + 2LnT (0, 0,Ω⊗ IT )− 2√
n
l′nCΩ−1Λln + op (1) ,
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as required. �

A.2. Proof of Theorem 2.3

Here κ = 1/2. Assume Condition 2.1 and n
T 1/2 → 0. By definition, we have

−2

[
min
β0

LnT
(
C, β0G′0,Ω−1u

)
−min

β0

LnT
(
0, β0G

′
0,Ω

−1
u

)]
=

n∑
i=1

[
(∆ciY i)

′
Ω−1u,i (∆ciY i)− (∆Y i)

′
Ω−1u,i (∆Y i)

]
−

n∑
i=1

[
(∆ciY i)

′
Ω−1u,i (∆ciG0)

(
(∆ciG0)

′
Ω−1u,i (∆ciG0)

)−1
(∆ciG0)

′
Ω−1u,i (∆ciY i)

− (∆Y i)
′
Ω−1u,i (∆G0)

(
(∆G0)

′
Ω−1u,i (∆G0)

)−1
(∆G0)

′
Ω−1u,i (∆Y i)

]
.

By (A.2) , (A.3) , (A.4) , and (A.5) we can approximate the first term as

n∑
i=1

[
(∆ciY i)

′
Ω−1u,i (∆ciY i)− (∆Y i)

′
Ω−1u,i (∆Y i)

]
=

n∑
i=1

1

ω2
i

[
(∆ciY i)

′
(∆ciY i)− (∆Y i)

′
(∆Y i)

]
− 2

n1/2

n∑
i=1

ci
λi
ω2
i

+ op (1) .

Then, the required result for the theorem follows since

n∑
i=1

(∆ciY i)
′
Ω−1u,i (∆ciG0)

(
(∆ciG0)

′
Ω−1u,i (∆ciG0)

)−1
(∆ciG0)

′
Ω−1u,i (∆ciY i)

−
n∑
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1

ω2
i

(∆ciY i)
′
(∆ciG0)

(
(∆ciG0)

′
(∆ciG0)

)−1
(∆ciG0)

′
(∆ciY i)

= op (1) (A.6)

for any ci such that supi |ci| < M for some constant M. The proof of (A.6) is available
in the following subsection. �

A.3. Proof of Theorem 2.5

Here κ = 1/4. Assume Condition 2.1 and n
T 1/4 → 0. By definition, we have

−2

[
min
β
LnT

(
C, βG′,Ω−1u

)
−min

β
LnT

(
0, βG′,Ω−1u

)]
=

n∑
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[
(∆ciY i)

′
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]
−
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]
.
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By (A.2) , (A.3) , (A.4) , and (A.5) , we can approximate the first term as

n∑
i=1

[
(∆ciY i)

′
Ω−1u,i (∆ciY i)− (∆Y i)

′
Ω−1u,i (∆Y i)

]
=

n∑
i=1

1

ω2
i

[
(∆ciY i)

′
(∆ciY i)− (∆Y i)

′
(∆Y i)

]
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n1/4

n∑
i=1

ci
λi
ω2
i

+ op (1) .

Also, in the following subsection we show that

n∑
i=1

(∆ciY i)
′
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(
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′
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= op (1) (A.7)

for any ci such that supi |ci| < M for some constant M. Then, we have

n∑
i=1

[
(∆ciY i)

′
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(
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)−1
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]
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ω2
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(
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(
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Combining these expressions gives the required result

−2

[
min
β
LnT

(
C, βG′,Ω−1u

)
−min

β
LnT

(
0, βG′,Ω−1u

)]
= −2

[
min
β
LnT

(
C, βG′,Ω−1 ⊗ IT

)
−min

β
LnT

(
0, βG′,Ω−1 ⊗ IT

)]
− 2

n1/4
l′nCΩ−1Λln + op (1) . �

A.4. Supplementary Results

A.4.1. A Useful Lemma Before we start the proof of (A.4) and (A.5) , we introduce
a useful technical result. When A is a matrix, we use three different norms, ‖A‖o =

λmax (A′A)
1/2

, where λmax (·) denotes the maximum eigenvalue, ‖A‖ = tr (A′A)
1/2

, and

|A| =
∑
i,j |aij | , where aij is the (i, j)

th
element of A. It is well known that

‖A‖o ≤ ‖A‖ ≤ |A| .

By definition, the covariance matrix of U i is Ωu,i = [γi (t− s)]t,s . Let Ai be the (T × T )

matrix whose (t, s) element ai,t,s is ρt−s−1i , if t > s, and zero, if t ≤ s. Let

Ri = ωiΩ
−1/2
u,i − ω−1i Ω

1/2
u,i . (A.8)

Lemma 4.1. Assume Condition 2.1. Then supi
1

T 1/2 ‖RiAi‖ < M for some constant M.
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Proof. For the desired result, we show

sup
i

1

T
‖RiAi‖2 ≤M.

By definition,

sup
i

1

T
‖RiAi‖2 = sup

i

1

T
tr (A′iR

′
iRiAi) = sup

i

1

T
tr
(
ω2
iA
′
iΩ
−1
u,iAi + ω−2i A′iΩu,iAi − 2A′iAi

)
≤M sup

i

∣∣∣∣ 1

T
tr
(
A′i
(
Ωu,i − ω2

i

)
Ai
)∣∣∣∣+M sup

i

∣∣∣∣ 1

T
tr
(
A′i
(
Ω−1u,i − ω

−2
i

)
Ai
)∣∣∣∣

= M (I + II) , say,

where the inequality holds since 0 < infi ω
2
i ≤ supi ω

2
i <∞ under Condition 2.1 and by

the triangle inequality.
First we show that I = O (1) . Define

an,T,i (k) =
1

T

T−k∑
t=1

T∑
s=1

ai,t,sai,t+k,s =

(
1− θi

nκT

)k T−k∑
s=1

(
1− θi

nκT

)2(s−1)(
t− k − s

T

)

a′n,T,i (k) =

T−k∑
s=1

(
1− θi

nκT

)2(s−1)(
t− k − s

T

)

a′′n,T,i (k) =

T∑
s=1

(
1− θi

nκT

)2(s−1)(
t− k − s

T

)

an,T,i (0) =
1

T

(
T∑
t=1

ai,t,s

)2

=

T∑
s=1

(
1− θi

nκT

)2(s−1)(
t− s
T

)
.

By adding and subtracting the terms and the triangle inequality, we can bound

I = sup
i

∣∣∣∣ 1

T
tr
(
A′i
(
Ωu,i − ω2

i

)
Ai
)∣∣∣∣

≤ I1 + I2 + I3 + I4,

where

I1 = sup
i

2

∣∣∣∣∣
T−1∑
k=1

γi (k)
(
an,T,i (k)− a′n,T,i (k)

)∣∣∣∣∣
I2 = sup

i
2

∣∣∣∣∣
T−1∑
k=1

γi (k)
(
a′n,T,i (k)− a′′n,T,i (k)

)∣∣∣∣∣
I3 = sup

i
2

∣∣∣∣∣
T−1∑
k=1

γi (k)
(
a′′n,T,i (k)− an,T,i (0)

)∣∣∣∣∣
I4 = sup

i
2

∣∣∣∣∣an,T,i (0)

∞∑
k=T

γi (k)

∣∣∣∣∣ .
For term I1, note that since supi

∣∣∣ 1T ∑T−k
s=1

(
1− θi

nκT

)2(s−1) ( t−k−s
T

)∣∣∣ < M and supi |θi| <
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M, we have ∣∣(an,T,i (k)− a′n,T,i (k)
)∣∣

= T

∣∣∣∣∣
(

1− θi
nκT

)k
− 1

∣∣∣∣∣
∣∣∣∣∣ 1

T

T−k∑
s=1

(
1− θi

nκT

)2(s−1)(
t− k − s

T

)∣∣∣∣∣
≤MT

∣∣∣∣∣
(

1− θi
nκT

)k
− 1

∣∣∣∣∣ = MT

∣∣∣∣∣∣
k∑
j=1

(
k

j

)(
−θi
nκT

)j∣∣∣∣∣∣
≤MT

k∑
j=1

1

j!

(
|θi| k
nκT

)j
= MT

|θi| k
nκT

k∑
j=1

1

j!

(
|θi| k
nκT

)j−1

≤M k

nκ

1 +

∞∑
j=1

1

j!

(
M

nκ

)j = M
k

nκ
exp

(
M

nκ

)
,

where the second inequality uses
(
k
j

)
≤ kj

j! , the last inequality uses supi |θi| < M and
k
T ≤ 1, and the equality uses the Taylor representatoin of the exponential function. Then,

I1 ≤ 2

T−1∑
k=1

γ (k) sup
i

∣∣(an,T,i (k)− a′n,T,i (k)
)∣∣ ≤ M

nκ

(
exp

(
M

nκ

)
− 1

) T−1∑
k=1

γ (k) k = o (1) .

For term I2, notice that∣∣(a′n,T,i (k)− a′′n,T,i (k)
)∣∣

≤ 2T
1

T

T∑
s=T−k+1

(
1 +

|θi|
nκT

)2(s−1)

≤ 2T

∫ 1

1− k
T

exp

(
2 |θi| r
nκ

)
dr

=

{
T nκ

|θi| exp
(

2|θi|
nκ

) [
1− exp

(
− 2|θi|

nκ
k
T

)]
for θi 6= 0

2k for θi = 0

≤Mk,

where the first inequality holds since θi ≥ 0 and
∣∣ t−k−s

T

∣∣ ≤ 2 and the last inequality holds
by the mean-value theorem and supi |θi| < M. Then,

I2 = sup
i

2

∣∣∣∣∣
T−1∑
k=1

γi (k)
(
a′n,T,i (k)− a′′n,T,i (k)

)∣∣∣∣∣ ≤M
T−1∑
k=1

γ (k) k = O (1) .

For term I3, we have

I3 = sup
i

2

∣∣∣∣∣
T−1∑
k=1

γi (k)
(
a′′n,T,i (k)− an,T,i (0)

)∣∣∣∣∣
≤ 2

T−1∑
k=1

γ (k) k sup
i

∣∣∣∣∣ 1

T

T∑
s=1

(
1− θi

nκT

)2(s−1)
∣∣∣∣∣ = O (1) ,
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the last line holds since supi

∣∣∣ 1T ∑T
s=1

(
1− θi

nκT

)2(s−1)∣∣∣ < M. Finally, we have

I4 = sup
i

2

∣∣∣∣∣an,T,i (0)

∞∑
k=T

γi (k)

∣∣∣∣∣
≤ sup

i

∣∣∣∣∣ 1

T

T∑
s=1

(
1− θi

nκT

)2(s−1)(
t− s
T

)∣∣∣∣∣T
∞∑
k=T

γ (k)

≤MT

∞∑
k=T

k−s ≤M
∞∑
k=T

k−s+1 = o (1) ,

where the second inequality holds since supi

∣∣∣ 1T ∑T
s=1

(
1− θi

nκT

)2(s−1) ( t−s
T

)∣∣∣ < M. By

combining terms I1 − I4, we have the required result

I = O (1) .

The proof of II = O (1) follows in a similar fashion and is omitted.

A.4.2. Proof of (A.5) We prove the required result when n
T → 0 and κ = 1/4. Since

E

(
1

n1/2

n∑
i=1

η2iT

)2

=

(
1

n1/2

n∑
i=1

E (η2iT )

)2

+ V ar

(
1

n1/2

n∑
i=1

η2iT

)

≤
(
n1/2 sup

i
|E (η2iT )|

)2

+ sup
i
V ar (η2iT ) ,

the required result follows if we show

n1/2 sup
i
|Eη2iT | = o (1) (A.9)

and

sup
i
V ar (η2iT ) = o (1) . (A.10)

For (A.9) , we follow similar arguments used in proving |E[S1]| → 0 on page 831 (in
the proof of Lemma A2) of ERS, and have for some constant M

n1/2 sup
i
|Eη2iT | ≤

( n
T

)1/2
M sup

i

(
1

ωi
‖Ωu,i‖o

∥∥Ω−1u,i
∥∥1/2
o

‖RiAi‖√
T

)
≤M

( n
T

)1/2
= o (1) ,

where the second inequality holds since 0 < Ml ≤ infi fi (λ) ≤ supi fi (λ) ≤ Mu < ∞
and by Lemma 4.1, and the last inequality holds since n

T → 0.
For (A.10) , we also follow similar arguments to those used in proving |V ar (S1)| → 0

on page 831 (in the proof of Lemma A2) of ERS, and have for some constant M

sup
i
V ar (η2iT ) ≤ 1

T
M sup

i

(
1

ω2
i

‖Ωu,i‖2o
∥∥Ω−1u,i

∥∥
o

‖RiAi‖2

T

)
≤ M

T
= o (1) . �

A.4.3. Proof of (A.4) We prove the required result when n
T → 0 and κ = 1/4. By

replacing ∆Y i in η1iT with − θi
n1/4T

Y −1,i + U i, we can decompose η1iT as

η1iT = η3iT −
1

n1/4
η4iT ,
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where

η3iT = 2ci

[
1

T
Y ′−1,iΩ

−1
u,iU i −

1

T

Y ′−1,iU i
ω2
i

+
λi
ω2
i

]

η4iT = ciθi

[
1

T 2
Y ′−1,iΩ

−1
u,iY −1,i −

1

T

Y ′−1,iY −1,i
ω2
i

]
,

and

1

n1/4

n∑
i=1

η1iT =
1

n1/4

n∑
i=1

η3iT −
1

n1/2

n∑
i=1

η4iT .

First, similar arguments to those in the proof of (A.5) lead to

1

n1/2

n∑
i=1

η4iT = op (1) .

Then, the required result follows if

1

n1/4

n∑
i=1

η3iT = op (1) ,

which follows if

E[
1

n1/4

n∑
i=1

η3iT ]2 = o (1) .

Notice that

E[
1

n1/4

n∑
i=1

η3iT ]2 =

(
1

n1/4

n∑
i=1

E[η3iT

)
]2 + V ar

(
1

n1/4

n∑
i=1

η3iT

)

≤
(
n3/4 sup

i
|E[η3iT ]|

)2

+ n1/2 sup
i
V ar (η3iT ) ,

By similar arguments to those used for the proof of supi V ar (η2iT ) = O
(
1
T

)
, we can

show that

n1/2 sup
i
V ar (η3iT ) = n1/2O

(
1

T

)
= o (1) .

For n3/4 supi |E[η3iT ]| = o (1) , we show

sup
i
|E[η3iT ]| = O

(
1

T

)
. (A.11)

Since n
T → 0, the desired result follows. Since Y −1,i = AiU i, we have

η3iT = 2ci

[
1

T
A′iU

′
iΩ
−1
u,iU i −

1

T

A′iU
′
iU i

ω2
i

+
λi
ω2
i

]
.
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Since tr (Ai) = 0, we have

E[η3iT ] = 2ci
1

T

[
tr (Ai)−

1

ω2
i

tr (Ωu,iAi)

]
+ 2ci

λi
ω2
i

=
−2ci
ω2
i

[
T∑
k=1

γi (k)

(
1− k

T

)
ρk−1i −

∞∑
k=1

γi (k)

]

=
−2ci
ω2
i

[
T∑
k=1

γi (k)
(
ρk−1i − 1

)
− 1

T

T∑
k=1

kγi (k) ρk−1i −
∞∑

k=T+1

γi (k)

]
= I + II + III, say.

For term I, we can bound

0 ≤
∣∣1− ρk−1i

∣∣ =

∣∣∣∣∣1−
(

1− θi
nκT

)k−1∣∣∣∣∣ ≤
k−1∑
j=1

(
k − 1

j

)(
|θi|
nκT

)j

≤
k−1∑
j=1

1

j!

(
|θi| (k − 1)

nκT

)j
=
|θi| (k − 1)

nκT

k−1∑
j=1

1

j!

(
|θi| (k − 1)

nκT

)j−1

≤ M (k − 1)

nκT

k−1∑
j=1

1

j!

(
M

nκ

)j−1
≤ M (k − 1)

nκT

1 +

∞∑
j=1

1

j!

(
M

nκ

)j
≤ M (k − 1)

nκT

(
exp

(
M

nκ

))
.

Then, for some constant M > 0, we can bound

|I| = sup
i

2ci
ω2
i

T∑
k=1

|γi (k)|
∣∣(1− ρk−1i

)∣∣ ≤ M

nκT

(
exp

(
M

nκ

)) T∑
k=1

γ (k) k = o

(
1

T

)
,

as required. Next,

|II| ≤ M

T

T∑
k=1

kγ (k) = O

(
1

T

)
,

and

|III| ≤M
∞∑

k=T+1

γ (k) ≤M
∞∑

k=T+1

k−s by Condition (iii)

≤M (T + 1)
−s+1

= o

(
1

T

)
since s > 2,

as required. �

A.4.4. More Preliminary Results In this section κ = 1/4 and we assume Condition

2.1. Define Φi to the (T × T ) matrix whose (r, s)
th

element is φi (r − s) , where φi (k) is
defined in Condition 2.1.
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Define G̃ =
[
G̃0, G̃1

]
= [G0, G1]

(
diag

(√
T , 1

))
. Direct calculations show that

∆ciG̃0 =
(
T 1/2,

ci
n1/4T 1/2

, ...,
ci

n1/4T 1/2

)′
,

∆ciG̃1 =

(
0, 1 +

ci
n1/4

1

T
, ..., 1 +

ci
n1/4

t− 1

T
, ..., 1 +

ci
n1/4

T − 1

T

)′
,

1

T

(
∆ciG̃

)′ (
∆ciG̃

)
=

 1 +
c2i

n1/2T
T−1
T

1
T 1/2

(
ci
n1/4 +

c2i
n1/2

1
T

∑T
t=2

t−1
T

)
1

T 1/2

(
ci
n1/4 +

c2i
n1/2

1
T

∑T
t=2

t−1
T

)
1
T

∑T
t=2

(
1 + ci

n1/4
t−1
T

)2
 ,

and

1

T 1/2

(
∆ciG̃

)′
(∆ciY i)

=

(
yi1 + ci

n1/4T 1/2
1

T 1/2 (yiT − yi1) +
c2i

n1/2T 1/2
1

T 3/2

∑T
t=2 yit−1

1
T 1/2 (yiT − yi1) + ci

n1/4T 1/2

(
yiT − 1

T (yiT + yi0)
)

+
c2i
n1/2

1
T 3/2

∑T
t=2

t−1
T yit−1

)
(A.12)

Define

bjln,T,i (k) =
1

T

T−k∑
t=2

[(
∆ciG̃j

)
t

(
∆ciG̃l

)
t+k

+
(

∆ciG̃l

)
t

(
∆ciG̃j

)
t+k

]
,

where (x)t is the tth element of the vector x and j, l = 0, 1.

Lemma 4.2. (a) supi
∣∣b01n,T,i (k)

∣∣ ≤ M
T 1/2 for all k. (b) supi

∣∣b11n,T,i (k)− b11n,T,i (0)
∣∣ ≤ M k

T
for some finite constant M.

Proof. Part (a): By definition, for k = 0,

sup
i

∣∣b01n,T,i (0)
∣∣ = 2 sup

i

∣∣∣∣ 1

T

(
∆ciG̃0

)′ (
∆ciG̃1

)∣∣∣∣ =
2

T 1/2
sup
i

∣∣∣∣∣ cin1/4
+

c2i
n1/2

1

T

T∑
t=2

t− 1

T

∣∣∣∣∣ ≤ M

n1/4T 1/2
.

For k ≥ 1, we have

sup
i

∣∣b01n,T,i (k)
∣∣ = sup

i

∣∣∣∣∣ 1

T

T−k∑
t=2

[(
∆ciG̃0

)
t

(
∆ciG̃1

)
t+k

+
(

∆ciG̃1

)
t

(
∆ciG̃0

)
t+k

]∣∣∣∣∣ ≤ M

T 1/2
,

as required. �
Part (b): By definition,

sup
i

∣∣b11n,T,i (k)− b11n,T,i (0)
∣∣

≤ 2
1

T

T−k∑
t=2

∣∣∣∣∣
(

1 +
ci

n1/4T

t− 1

T

)(
1 +

ci
n1/4T

t+ k − 1

T

)
−
(

1 +
ci

n1/4T

t− 1

T

)2
∣∣∣∣∣

+2
1

T

T∑
t=T−k+1

(
1 +

ci
n1/4T

t− 1

T

)2

≤ M

n1/4
k

T
+M

k

T
,

as required.
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Lemma 4.3. (a) Suppose that xi and zi are T− vectors such that supi,t |zit| is bounded,

where zit is the tth element of zi. Then, supi
∣∣ 1
T x
′
i

(
Ω−1u,i − Φi

)
zi
∣∣ = O

(
supi‖xi‖

T

)
. (b)

supi
1
T

∥∥∥Ri (∆ciG̃1

)∥∥∥2 = O
(

1
T 1/2

)
, where Ri is defined in (A.8) .

Proof. Part (a): The proof is similar to that of Lemma A1 of ERS and is omitted. �

Part (b): We replace Ai in the proof of Lemma 4.1 with
(

∆ciG̃1

)
. Then, the required

result follows if we show

(b1): sup
i

∣∣∣∣ 1

T

(
∆ciG̃1

)′ (
Ωu,i − ω2

i

) (
∆ciG̃1

)∣∣∣∣ = O

(
1

T

)
(b2): sup

i

∣∣∣∣ 1

T

(
∆ciG̃1

)′ (
Ω−1u,i − ω

−2
i

) (
∆ciG̃1

)∣∣∣∣ = O

(
1

T 1/2

)
.

For Part (b1), by definition, we have

sup
i

∣∣∣∣ 1

T

(
∆ciG̃1

)′ (
Ωu,i − ω2

i

) (
∆ciG̃1

)′∣∣∣∣
= sup

i

∣∣∣∣∣
T−1∑
k=1

γi (k)
(
b11n,T,i (k)− b11n,T,i (0)

)
−

( ∞∑
k=T

γi (k)

)
b11n,T,i (0)

∣∣∣∣∣
≤ sup

i

∣∣∣∣∣
T−1∑
k=1

γi (k)
(
b11n,T,i (k)− b11n,T,i (0)

)∣∣∣∣∣+ sup
i

∣∣∣∣∣
( ∞∑
k=T

γi (k)

)
b11n,T,i (0)

∣∣∣∣∣ .
By by Lemma 4.2(b), the first term is bounded by

T−1∑
k=1

γ (k) sup
i

∣∣b11n,T,i (k)− b11n,T,i (0)
∣∣ ≤M 1

T

T−1∑
k=1

γ (k) k = O

(
1

T

)
,

as required. Under Condition 2.1(iii), the second term is bounded by( ∞∑
k=T

k−s

)
sup
i

∣∣b11n,T,i (0)
∣∣ ≤ o( 1

T

)
,

as required.
For Part (b2), we have

sup
i

∣∣∣∣ 1

T

(
∆ciG̃1

)′ (
Ω−1u,i − ω

−2
i

) (
∆ciG̃1

)∣∣∣∣
≤ sup

i

∣∣∣∣ 1

T

(
∆ciG̃1

)′ (
Ω−1u,i − Φi

) (
∆ciG̃1

)∣∣∣∣+ sup
i

∣∣∣∣ 1

T

(
∆ciG̃1

)′ (
Φi − ω−2i

) (
∆ciG̃1

)∣∣∣∣ .
By Part (a), we have

sup
i

∣∣∣∣ 1

T

(
∆ciG̃1

)′ (
Ω−1u,i − Φi

) (
∆ciG̃1

)∣∣∣∣ ≤ O
sup

i

∥∥∥∆ciG̃1

∥∥∥
T

 = O

(
1

T 1/2

)
.

Using similar argument used in the proof of Part (b1), we can bound the second term by

sup
i

∣∣∣∣ 1

T

(
∆ciG̃1

)′ (
Φi − ω−2i

) (
∆ciG̃1

)∣∣∣∣ ≤ O( 1

T

)
.
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Combining these, we have the required result for Part (b2).

For C = diag (c1, ..., cn) , we define

AiT (C) =
1

T 1/2

(
∆ciG̃

)′
Ω−1u,i (∆ciY i) , A

∗
iT (C) =

1

ω2
i

1

T 1/2

(
∆ciG̃

)′
(∆ciY i)

BiT (C) =
1

T

(
∆ciG̃

)′
Ω−1u,i

(
∆ciG̃

)
, B∗iT (C) =

1

ω2
i

1

T
(∆ciG)

′
(∆ciG) ,

B̃iT (C) = diag (B11,iT (C) , B22,iT (C)) , B̃∗iT (C) = diag
(
B∗11,iT (C) , B∗22,iT (C)

)
and we will define Bkl,iT (C) to the (k, l)

th
element of BiT (C) and Ak,iT (C) to be the

kth element of Ak,iT (C) , where k, l = 1, 2. Similarly we define A∗k,iT (C) and B∗kl,iT (C) .

Lemma 4.4. Under Conditions 2.1, the following hold.
(a) supi |B12,iT (C)| , supi

∣∣B∗12,iT (C)
∣∣ = O

(
1

T 1/2

)
.

(b) supi

∥∥∥BiT (C)− B̃iT (C)
∥∥∥ , supi

∥∥∥B∗iT (C)− B̃∗iT (C)
∥∥∥ = O

(
1

T 1/2

)
.

(c) supi

∥∥∥BiT (C)
−1
∥∥∥ , supi

∥∥∥B̃iT (C)
−1
∥∥∥ ≤M.

(d) supiE ‖AiT (C)‖2 , supiE ‖A∗iT (C)‖2 ≤M.
(e) supi |B11,iT (C)−B11,iT (0)| = O

(
1

n1/4T 1/2

)
.

(f) supi
∣∣B22,iT (C)−B∗22,iT (C)

∣∣ = O
(

1
T 1/2

)
.

(g) supiE
∣∣A2,iT (C)−A∗2,iT (C)

∣∣2 = O
(

1
T 1/2

)
.

Proof. Part (a): A direct calculation shows that supi
∣∣B∗12,iT (C)

∣∣ = O
(

1
T 1/2

)
. We

bound supi |B12,iT (C)| by

sup
i
|B12,iT (C)| = sup

i

∣∣∣∣ 1

T

(
∆ciG̃0

)′
Ω−1u,i

(
∆ciG̃1

)∣∣∣∣
≤ sup

i

∣∣∣∣ 1

T

(
∆ciG̃0

)′ (
Ω−1u,i − Φi

) (
∆ciG̃1

)∣∣∣∣+ sup
i

∣∣∣∣ 1

T

(
∆ciG̃0

)′(
Φi −

1

ω2
i

)(
∆ciG̃1

)∣∣∣∣
+ sup

i

∣∣∣∣ 1

T

1

ω2
i

(
∆ciG̃0

)′ (
∆ciG̃1

)∣∣∣∣ .
By Lemma 4.3(a), we have

sup
i

∣∣∣∣ 1

T

(
∆ciG̃0

)′ (
Ω−1u,i − Φi

) (
∆ciG̃1

)∣∣∣∣ = O

sup
i

∥∥∥∆ciG̃0

∥∥∥
T

 = O

(
1

T 1/2

)
.

By Lemma 4.2 and Condition 2.1, we have

sup
i

∣∣∣∣ 1

T

(
∆ciG̃0

)′(
Φi −

1

ω2
i

)(
∆ciG̃1

)∣∣∣∣ = O

(
1

T 1/2

)
.

Finally, the last term is

sup
i

∣∣∣∣ 1

T

1

ω2
i

(
∆ciG̃0

)′ (
∆ciG̃1

)∣∣∣∣ = sup
i

∣∣B∗12,iT (C)
∣∣ = O

(
1

T 1/2

)
,

as required. �
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Part (b) is an immediate corollary of Part (a). �
Part (c): First notice that under Condition 2.1 we have

0 <Ml ≤ inf
i
Bkk,iT (C) =

∥∥∥∥ 1

T

(
∆ciG̃k−1

)∥∥∥∥2 1

supi λmax (Ωu,i)

≤ Bkk,iT (C) ≤ sup
i
Bkk,iT (C) =

∥∥∥∥ 1

T

(
∆ciG̃k−1

)∥∥∥∥2 1

infi λmin (Ωu,i)
≤Mu <∞,

where k = 1, 2. It follows immediately that

sup
i

∥∥∥B̃iT (C)
−1
∥∥∥ ≤ 1

infiB11,iT (C)
+

1

infiB22,iT (C)
≤M,

as required. Also, the desired result follows since

sup
i

∥∥∥BiT (C)
−1
∥∥∥ = sup

i

∥∥∥∥ 1

det (BiT (C))

(
B22,iT (C) −B12,iT (C)
−B12,iT (C) B11,iT (C)

)∥∥∥∥
≤ supi ‖BiT (C)‖

infiB11,iT (C) infiB22,iT (C)− supiB12,iT (C)
2

=
supi

∥∥∥B̃iT (C)
∥∥∥+ o (1)

infiB11,iT (C) infiB22,iT (C) + o (1)
≤M,

where the second equality holds by Part (a). �
Part (d): The desired result supiE ‖A∗iT (C)‖2 ≤M follows from (A.12) and by direct

calculation. For the second desired result, notice that E ‖AiT (C)‖2 = E ‖A1,iT (C)‖2 +

E ‖A2,iT (C)‖2 . First, supiE ‖A2,iT (C)‖2 ≤M since E ‖A2,iT (C)‖2 ≤ 2E
∥∥A∗2,iT (C)

∥∥2+

2E
∥∥A2,iT (C)−A∗2,iT (C)

∥∥2 ≤ M by supiE ‖A∗iT (C)‖2 ≤ M and by Part (g) which we
prove later. Next, by definition,

A1,iT (C) =
1

T 1/2

(
∆ciG̃0

)′
Ω−1u,i (∆ciY i)

=
(ci − θi)
n1/4

1

T 3/2

(
∆ciG̃0

)′
Ω−1u,iY −1,i +

1

T 1/2

(
∆ciG̃0

)′
Ω−1u,iU i

= Ii + IIi, say.

Since Y −1,i = AiU i, where Ai is defined above Lemma 4.1, we have

sup
i
E[I2i ] = sup

i
E[

(ci − θi)2

n1/2ω2
i

1

T 3

(
∆ciG̃0

)′
Ω−1u,iAiΩu,iAiΩ

−1
u,i

(
∆ciG̃0

)
]

≤M 1

n1/2

sup
i

∥∥∥∥∥∆ciG̃0

T 1/2

∥∥∥∥∥
2
(sup

i

∥∥∥∥AiT
∥∥∥∥2
)(

sup
i

∥∥Ω−1u,i
∥∥2
o

)(
sup
i
‖Ωu,i‖o

)

= O

(
1

n1/2

)
= o (1) ,
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and

sup
i
E[II2i ] = sup

i

1

T

(
∆ciG̃0

)′
Ω−1u,i

(
∆ciG̃0

)
≤

sup
i

∥∥∥∥∥∆ciG̃0

T 1/2

∥∥∥∥∥
2
(sup

i

∥∥Ω−1u,i
∥∥
o

)
= O (1) .

Therefore, we have

sup
i
E
∥∥A∗1,iT (C)

∥∥2 ≤M,

as required. �
Part (e): Notice that

B11,iT (C)−B11,iT (0)

=
1

T

(
∆ciG̃0 −∆G̃0

)′
Ω−1u,i

(
∆ciG̃0 −∆G̃0

)
− 2

T

(
∆ciG̃0 −∆G̃0

)′
Ω−1u,i

(
∆G̃0

)
.

The required result follows since

sup
i
|B11,iT (C)−B11,iT (0)|

≤ 1

T

(
sup
i

∥∥∥∆ciG̃0 −∆G̃0

∥∥∥2)(sup
i

∥∥Ω−1u,i
∥∥
o

)
+

2

T

(
sup
i

∥∥∥∆ciG̃0 −∆G̃0

∥∥∥)(sup
i

∥∥Ω−1u,i
∥∥
o

)∥∥∥∆G̃0

∥∥∥
=

1

T
O

(
1

n1/2

)
O (1) +

1

T
O

(
1

n1/4

)
O (1)O

(
T 1/2

)
= O

(
1

n1/4T 1/2

)
,

as required. �
Part (f) follows by Lemma 4.3b(2). �
Part (g): By definition, we have

A2,iT (C)−A∗2,iT (C)

=
(ci − θi)
n1/4

1

T 3/2

(
∆ciG̃1

)′(
Ω−1u,i −

1

ω2
i

)
Y −1,i +

1

T 1/2

(
∆ciG̃1

)′(
Ω−1u,i −

1

ω2
i

)
U i

=
(ci − θi)
n1/4ωi

1

T 3/2

((
∆ciG̃1

)′
Ri

)
Ω
−1/2
u,i AiU i +

1

ωiT 1/2

((
∆ciG̃1

)′
Ri

)
Ω
−1/2
u,i U i

= Ii + IIi, say,

where the second equality holds since Y −1,i = AiU i, where Ai is defined above Lemma
4.1, and Ri is defined in (A.8) .

sup
i
E[I2i ] = sup

i
E[

(ci − θi)2

n1/2ω2
i

1

T 3

((
∆ciG̃1

)′
Ri

)
Ω
−1/2
u,i AiΩu,iAiΩ

−1/2
u,i

(
R′i

(
∆ciG̃1

))
]

≤M 1

n1/2

(
sup
i

1

T

∥∥∥∥(∆ciG̃1

)′
Ri

∥∥∥∥2
)(

sup
i

∥∥∥∥AiT
∥∥∥∥2
)(

sup
i

∥∥Ω−1u,i
∥∥
o

)(
sup
i
‖Ωu,i‖o

)
= O

(
1

n1/2T 1/2

)
,

and

sup
i
E[II2i ] = sup

i

1

ω2
i

sup
i

1

T

∥∥∥∥(∆ciG̃1

)′
Ri

∥∥∥∥2 = O

(
1

T 1/2

)
.
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Combining the bounds of supiE[I2i ] and supiE[II2i ], we have the desired result for Part
(g).

A.5. Proof of (A.6)

The required result follows if we show

n∑
i=1

[
A1,iT (C)

2
B11,iT (C)

−1 −A1,iT (0)
2
B11,iT (0)

−1
]

= op (1) ,

n∑
i=1

[
A∗1,iT (C)

2
B∗11,iT (C)

−1 −A∗1,iT (0)
2
B∗11,iT (0)

−1
]

= op (1) .

Notice that∣∣∣∣∣
n∑
i=1

[
A1,iT (C)

2
B11,iT (C)

−1 −A1,iT (0)
2
B11,iT (0)

−1
]∣∣∣∣∣

≤
n∑
i=1

∣∣∣A1,iT (C)
2
(
B11,iT (C)

−1 −B11,iT (0)
−1
)∣∣∣+

n∑
i=1

∣∣∣A1,iT (C)
2 −A1,iT (0)

2
∣∣∣B11,iT (0)

−1
.

The first term is bounded by

n

(
sup
i
B11,iT (C)

−1
)(

sup
i
B11,iT (0)

−1
)

sup
i
|B11,iT (C)−B11,iT (0)|

(
1

n

n∑
i=1

A1,iT (C)
2

)

= nO (1)O (1)O

(
1

n1/4T 1/2

)
Op (1) = Op

(
n3/4

T 1/2

)
= op (1) ,

where the first equality holds by Lemma 4.4(c),(d), and (e) and the last equality holds
since n

T 1/2 = o (1). The second term is bounded by

n

(
1

n

n∑
i=1

(A1,iT (C)−A1,iT (0))
2

)1/2(
1

n

n∑
i=1

(A1,iT (C) +A1,iT (0))
2

)1/2

sup
i
B11,iT (0)

−1

= nOp

(
1

n1/8T 1/2

)
Op (1)O (1) = Op

(
n7/8

T 1/2

)
= op (1) ,

where the first equality holds by Lemma 4.4(c),(d), and supiE[A1,iT (C)−A1,iT (0)]2 =
O
(

1
n1/2T

)
, and the last equality holds since n

T 1/2 = o (1). Combining these two, we have
the required result

n∑
i=1

[
A1,iT (C)

2
B11,iT (C)

−1 −A1,iT (0)
2
B11,iT (0)

−1
]

= op (1) .

The second required result for Step 2 follows in similar fashion and we omit it. �
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A.6. Proof of (A.7)

The required result follows, if we show

n∑
i=1

[
AiT (C)

′
BiT (C)

−1
AiT (C)−AiT (0)BiT (0)

−1
AiT (0)

]
−

n∑
i=1

[
A∗iT (C)

′
B∗iT (C)

−1
A∗iT (C)−A∗iT (0)

′
B∗iT (0)

−1
A∗iT (0)

]
= op (1) ,

which will be established by the following three steps.

• Step 1: We show

n∑
i=1

[
AiT (C)

′
BiT (C)

−1
AiT (C)−AiT (0)BiT (0)

−1
AiT (0)

]
−

n∑
i=1

[
A∗iT (C)

′
B∗iT (C)

−1
A∗iT (C)−A∗iT (0)

′
B∗iT (0)

−1
A∗iT (0)

]
=

n∑
i=1

[
AiT (C)

′
B̃iT (C)

−1
AiT (C)−AiT (0) B̃iT (0)

−1
AiT (0)

]
−

n∑
i=1

[
A∗iT (C)

′
B̃∗iT (C)

−1
A∗iT (C)−A∗iT (0)

′
B̃∗iT (0)

−1
A∗iT (0)

]
+ op (1) .

• Step 2: By (A.6) we have

=

n∑
i=1

[
AiT (C)

′
B̃iT (C)

−1
AiT (C)−AiT (0) B̃iT (0)

−1
AiT (0)

]
−

n∑
i=1

[
A∗iT (C)

′
B̃∗iT (C)

−1
A∗iT (C)−A∗iT (0)

′
B̃∗iT (0)

−1
A∗iT (0)

]
=

n∑
i=1

[
A2,iT (C)

2
B22,iT (C)

−1 −A∗2,iT (C)
2
B∗22,iT (C)

−1
]

−
n∑
i=1

[
A2,iT (0)

2
B22,iT (0)

−1 −A∗2,iT (0)
2
B∗22,iT (0)

−1
]

+ op (1) .

• Step 3: We show

n∑
i=1

[
A2,iT (C)

2
B22,iT (C)

−1 −A∗2,iT (C)
2
B∗22,iT (C)

−1
]

= op (1)

n∑
i=1

[
A2,iT (0)

2
B22,iT (0)

−1 −A∗2,iT (0)
2
B∗22,iT (0)

−1
]

= op (1) .
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Proof of Step 1: Notice that since B∗iT (C) is a diagonal matrix,

n∑
i=1

A∗iT (C)
′
(
B∗iT (C)

−1 − B̃∗iT (C)
−1
)
A∗iT (C) = 0.

Then, the required result for Step 1 follows if we show

n∑
i=1

AiT (C)
′
(
BiT (C)

−1 − B̃iT (C)
−1
)
AiT (C) = op (1) .

The required result follows since∣∣∣∣∣
n∑
i=1

AiT (C)
′
(
BiT (C)

−1 − B̃iT (C)
−1
)
AiT (C)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

AiT (C)
′
(
BiT (C)

−1
(
B̃iT (C)−BiT (C)

)
B̃iT (C)

−1
)
AiT (C)

∣∣∣∣∣
≤

n∑
i=1

‖AiT (C)‖2
∥∥∥BiT (C)

−1
∥∥∥∥∥∥B̃iT (C)

−1
∥∥∥∥∥∥B̃iT (C)−BiT (C)

∥∥∥
≤ n

(
sup
i

∥∥∥BiT (C)
−1
∥∥∥)(sup

i

∥∥∥B̃iT (C)
−1
∥∥∥)(sup

i

∥∥∥B̃iT (C)−BiT (C)
∥∥∥)( 1

n

n∑
i=1

‖AiT (C)‖2
)

= nO (1)O (1)O

(
1

T 1/2

)
Op (1) = Op

( n

T 1/2

)
= op (1) ,

where the last line holds by Lemma 4.4(b),(c), and (d) and the condition n
T 1/4 → 0. �

Proof of Step 3: We show

n∑
i=1

[
A2,iT (C)

2
B22,iT (C)

−1 −A∗2,iT (C)
2
B∗22,iT (C)

−1
]

= op (1) .

The other required result
∑n
i=1

[
A2,iT (0)

2
B22,iT (0)

−1 −A∗2,iT (0)
2
B∗22,iT (0)

−1
]

= op (1)

follows in similar fashion and we omit the derivation. Notice that∣∣∣∣∣
n∑
i=1

[
A2,iT (C)

2
B22,iT (C)

−1 −A∗2,iT (C)
2
B∗22,iT (C)

−1
]∣∣∣∣∣

≤

∣∣∣∣∣
n∑
i=1

(
A2,iT (C)

2 −A∗2,iT (C)
2
)
B22,iT (C)

−1

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

A∗2,iT (C)
2
(
B22,iT (C)

−1 −B∗22,iT (C)
−1
)∣∣∣∣∣

For the first term, we have∣∣∣∣∣
n∑
i=1

(
A2,iT (C)

2 −A∗2,iT (C)
2
)
B22,iT (C)

−1

∣∣∣∣∣
≤ n

(
1

n

n∑
i=1

(
A2,iT (C)−A∗2,iT (C)

)2)1/2(
1

n

n∑
i=1

(
A2,iT (C) +A∗2,iT (C)

)2)1/2

sup
i
B22,iT (C)

−1

= nOp

(
1

T 1/4

)
Op (1)O (1) = Op

( n

T 1/4

)
= op (1) ,
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where the first equality holds by Lemma 4.4(c),(d), and (g) and the last equality holds
by the condition n

T 1/4 → 0. For the second term, notice that∣∣∣∣∣
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where the second equality holds by Lemma 4.4(c),(d), and (f) and the last equality holds
by the condition n

T 1/4 → 0. Then, we have all the desired results for Part (c). �

APPENDIX B: PROOFS OF THE LIMIT DISTRIBUTION RESULTS: THEOREMS
2.2, 2.4, AND 2.6

In this section we provide proofs of Theorems 2.2, 2.4, and 2.6. These proofs are very
similar to the proofs of the corresponding results in MPP and we therefore provide just
an outline of the proofs here.

B.7. Proof of Theorem 2.2
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Direct calculation shows that under the assumptions of the theorem, we have the following
joint limits
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and CLT
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thereby giving the required result. �

B.8. Proof Theorem 2.4

For the required result of the theorem, it is enough to show that

Vfe1,nT (C) = VnT (C) + op (1) .
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We can follow the proof on pages 449-450 of MPP and deduce that

Vfe11,nT (C) = op (1)

as n, T →∞ with n
T → 0, which proves the desired result. �

B.9. Proof of Theorem 2.6

The required result for Theorem 2.6 is a consequence of the following two lemmas. �
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Lemma 4.5. Assume Condition 2.1. Then, as n, T →∞ with n
T → 0, we have
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Proof. The proof is similar to the proof of Lemma 11 of MPP and is omitted.

Lemma 4.6. Assume Condition 2.1. Then, as n, T →∞ with n
T → 0, the following hold:
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Proof. The proofs of Parts (b) and (c) are similar to those of Lemma 12 (b) and (c)
and are skipped.

Part (a): First, notice from
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Then,

1

n1/4

n∑
i=1

ci
ω2
i

[
2

T

T∑
t=2

∆yityit−1 −
(
yiT√
T

)2

+

(
yi1√
T

)2

+ σ2
i

]

=
1

n1/4

n∑
i=1

ci
ω2
i

[
− (ρi − 1)

2 1

T

T∑
t=2

y2it−1 + 2 (1− ρi)
1

T

T∑
t=1

yit−1uit −

(
1

T

T∑
t=1

u2it − σ2
i

)]
.

Under the assumptions of the lemma,
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leading to the required result for Part (a).

APPENDIX C: PROOF OF THEOREM 2.7

We provide a sketch of the proof. Notice that under Condition 2.2, the following hold:
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i > 0 under Condition 2.1, we have
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with probability approaching one. These imply that ω̂2
i satisfies the properties in Lemmas

8, 10, and 14 of MPP, while λ̂2i and σ̂2
i satisfy the properties in Lemmas 8(a),(b), 10(a),

and 14(a)-(d) of MPP. The desired results follow by similar arguments to those used in
Theorems 8, 10, and 15 of MPP. �
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