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Abstract

We examine the relationship between the risk premium on the CRSP value-weighted index
total return and its conditional variance. We propose a new semiparametric model in which the
conditional variance process is parametric, while the conditional mean is an arbitrary function
of the conditional variance. For monthly CRSP value-weighted excess returns, the relationship

between the two moments that we uncover is nonlinear and non-monotonic.
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1. INTRODUCTION

Modern asset pricing theories such as Abel (1987, 1999), Cox, Ingersoll, and Ross (1985), Merton
(1973), and Gennotte and Marsh (1993) imply restrictions on the time series properties of expected
returns and conditional variances of market aggregates. These restrictions are generally quite compli-
cated, depending on utility functions as well as on the driving process of the stochastic components
of the model. However, in an influential paper Merton (1973) obtained very simple restrictions al-
beit under somewhat drastic assumptions; he showed in the context of a continuous time partial

equilibrium model that
py = El(rme — rpe)| Fea] = yvar[(rie — rp) [ Feoa] = 7037 (1)

where 7,,¢, 74 are the returns on the market portfolio and risk-free asset respectively, while F;_; is
the market wide information available at time ¢ — 1. The constant v is the Arrow—Pratt measure of
relative risk aversion.

The simplicity of the above restrictions and their apparent congruence with the original CAPM
restrictions (see Sharpe 1964 and Lintner 1965) has motivated a large number of empirical studies
that test some variant of this restriction. A convenient statistical framework for examining the
relationship between the quantities y, and ¢? in discrete financial time series is the ARCH class of
models, see the survey papers of Bollerslev, Chou, and Kroner (1992) and Bollerslev, Engle, and
Nelson (1994) for references. Engle, Lilien, and Robins (1987) examined the relationship between
government bonds of different maturities using the ARCH-M model in which the errors follow an
ARCH(p) process and y, = p(o?) for some parametric function yu(-). They examined p, = v, + 7,0
and 1, = v+ v; In(o?), finding that the latter specification provided the better fit. French, Schwert,
and Stambaugh (1987) and Nelson (1991) also examine this relationship using GARCH models.

Gennotte and Marsh (1993) argue that the linear relationship (1) should be regarded as a very
special case. They construct a general equilibrium model of asset returns and derive the equilibrium
relationship

pe =07 + g(03), (2)
where the form of g(-) depends on preferences and on the parameters of the distribution of asset
returns. If the representative agent has logarithmic utility, then ¢ (-) = 0 and the simple restrictions
of Merton pertain. In addition, Backus, Gregory, and Zin (1989) and Backus and Gregory (1993)
provide simulation evidence that g(-), and hence p(-), could be of arbitrary functional form in general
equilibrium. Whitelaw (2000) develops these empirical findings into an equilibrium asset-pricing

model with regime changes in which the relation is linear within each regime but overall nonlinear



due to the presence of the two distinct regimes. Veronesi (2001) also develops a model in which
investors receive noisy signals in which the shape of the relation between the risk premium and the
conditional variance is ambiguous and depends on investor uncertainty.

Pagan and Hong (1990) argue that the risk premium g, and the conditional variance o? are
highly nonlinear functions of the past whose form is not captured by standard parametric GARCH—-
M models. They estimate y, and 0? nonparametrically finding evidence of considerable nonlinearity.

They then estimated ¢ from the regression
Tmt = T = B + 607 + 11y, (3)

by least squares and instrumental variables methods with o? substituted by the nonparametric es-
timate, finding a negative but insignificant 6. Perron (in press) analyses this approach using weak
instrument asymptotics and finds similar results.

There are a number of drawbacks with their approach. Firstly, the conditional moments are
calculated using a restricted conditioning set - the information set used in defining p,, 0? contained
only a finite number of lags, i.e., Fio1 = {yi-1,...,%—p} for some fixed p and data series y; =
Tmt — 7 f¢. This greatly restricts the dynamics for the variance process. In particular, if the conditional
variance is highly persistent, the non-parametric estimator of the conditional variance provides a poor
approximation as confirmed by the simulation evidence reported in Perron (1998). Secondly, linearity
of the relationship between p, and o? is imposed, and this seems to be somewhat restrictive in view
of earlier findings.

In this paper, we investigate the relationship between the risk premium and the conditional vari-
ance of excess returns on the CRSP value-weighted index. We consider a semiparametric specification
that differs from previous treatments. In particular, we choose a parametric form for the variance
dynamics (in our case EGARCH), while allowing the mean to be an unknown function of ¢?. This
model takes account of the high level of persistence and leverage effect found in stock index return
volatility, while at the same time allowing for an arbitrary functional form to describe the relationship
between risk and return at the market level. We develop two estimation methods for this model:
a Fourier series method and a method based on kernels. The kernel method is based on iterative
one-dimensional smoothing and is similar in this respect to the backfitting method for estimating
additive nonparametric regression, see Hastie and Tibshirani (1990). We also suggest a bootstrap
algorithm for obtaining confidence intervals. Using these methods, we find evidence of a nonlinear
and non-monotonic relationship between the risk premium and the conditional variance.

Other work applying nonparametric methods to this problem can be found in Boudoukh, Richard-
son, and Whitelaw (1997) and Harvey (2002). Our work differs from these in the parametric specifi-

cation we choose for the conditional variance. This allows for the joint estimation of the two elements



of interest as will be described below.
In the next section we discuss the specification of our model, while in Sections 3 and 4 we describe
how to obtain point and interval estimates respectively. In Section 5, we present our empirical results

and the results of a small simulation experiment, while section 6 concludes.
2. A SEMIPARAMETRIC-MEAN EGARCH MODEL

We suppose that the excess returns y; are generated as follows
yo = u(o}) +eo, t=1,2,...,T, (4)

where ¢; is a martingale difference sequence with unit (conditional) variance, while yu(-) is a smooth
function, but of unknown functional form. The restriction that E[y,|F; 1], where Fy_1 = {y,_;}%2,,
only depends on the past through o? is quite severe but is a consequence of asset pricing models
such as for example Backus and Gregory (1993) and Gennotte and Marsh (1993). In any case, it is
possible to generalize this formulation in a number of directions. It is straightforward to incorporate
fixed explanatory variables, lagged o2, or lagged y; either as linear regressors or inside the unknown
function u(-). More complicated dynamics for €, such as an ARMA(p, ¢) model, and a multivariate
extension can also be accommodated.

We propose using a parametric function for the conditional variance so as to allow for rich
dynamics in the volatility. To be specific we shall consider the Exponential GARCH model introduced
by Nelson (1991):

p q
hy = log(o?) = a + Z b; 1og(af_j) + Z ek l|e—k| — E ler—k| + dey—x] - (5)

j=1 k=1
The presence of the lagged dependent variables h,_; allows very rich dynamics for the variance process
itself which cannot yet be achieved by nonparametric methods. The above model also allows both
the sign and the level of €, ; to affect 02 — good news and bad news can have different effects
on volatility, hence allowing the possibility of the so-called leverage effect in stock returns. The
parameter d controls the relative importance of the symmetric versus asymmetric effects. Evidence
of such a leverage effect in returns on stock indices is widespread in the literature and can be found
in Nelson (1991) for daily data and in Braun, Nelson, and Sunier (1991) for monthly data.

A number of authors, e.g., Nelson (1991), have found that standardized residuals from estimated
GARCH models are leptokurtic relative to the normal, see also Engle and Gonzalez—Rivera (1991).
We therefore assume that e; has a distribution within the exponential power family

v exp (—%|5/)\|”).
7€) = Saummr(yy)

A= 2020 (1/w) /T (3/v)]'2, (6)



where I' is the gamma function. The GED family of errors includes the normal (v =2), uni-
form (v =o00) and Laplace (v =1) as special cases. The distribution is symmetric about zero
for all v, and has finite second moments for v > 1. With this density, we obtain that F |g;| =
(A2Y7T (2/v))/T (1/v) (Hamilton 1994, p. 669).

We assume that the parameter values satisfy the requirements for stationarity given in Nelson
(1991). Carrasco and Chen (2002) establish a general result about the dependence properties of
a general class of volatility models, which suggests that the process y; is (G-mixing under some
conditions.

Newey and Steigerwald (1997) have recently shown that quasi-likelihood estimators in GARCH
models based on distributions other than the normal are generally inconsistent. Therefore, we also
investigate our EGARCH(p,q) specification for the variance combined with a normal error distribu-
tion.

The main difference between our model and previous treatments is that we do not restrict the
functional form of p(-) a priori. This has a number of implications both for estimation and testing.
In particular, a simple consistent estimator of y(-) is difficult to obtain and would appear to depend
on first obtaining consistent estimates of the parameters of the variance process. On the other hand,
to estimate these parameters we need to have a good estimate of x(-). In the next section we propose

a solution to this problem.
3. ESTIMATION

3.1 Parametric Estimation

Estimation of the unknown parameters by maximum likelihood when pu(-) is known apart from
a finite number of parameters, say 7, is considered in Engle, Lilien, and Robins (1987) and Nelson
(1991). In this case, let 8 = (¢, 7), where ¢ = (a,by,...,b,, c1,...,¢q,d, v)', while 7 are the vector of
unknown mean parameters. Then £,(6) and h;(#) can be built up recursively given initial conditions,

and the conditional log-likelihood function is

- Zét Zlog f(e(0 Z h(0 (7)

The likelihood function can be maximized with respect to ¢ and 7 using the BHHH algorithm, viz.

T
gt = gl — \I [Z éwé;@] > b, (8)
t=1 t=1



where A is a variable step length chosen to maximize the log likelihood function in the given
direction, and the score functions éte are evaluated at 0. Although the likelihood function is not
smooth in all parameters [because of the presence of the absolute value of ], this derivative-based
method seems to work well in practice. Some authors have modified the specification by using a
smooth substitute for the absolute function for values around zero to avoid this problem. This

proved unnecessary in our case.
3.2 Semiparametric Estimation

We propose several methods of constructing estimates of ¢ and p(-) in the semiparametric model.
We estimate p using two main approaches: the first one consists of treating the T x 1 vector u =
(tq, fig, - - -, i)’ as unknown parameters and estimating them through a kernel smoothing method
inside the optimization routine. The second approach is to parametrize p(-) in a flexible way using
series expansion methods. The basis we will use is the Fourier Flexible Form of Gallant (1981),
although others could be used. Estimation of ¢ is then achieved by concentrating the likelihood
function. We describe the estimation and the construction of confidence intervals for each method

in turn.

Kernel Estimation.

The first method estimates p by a smoothing procedure based on kernels (see Hiirdle 1990, Hérdle
and Linton 1994 and Pagan and Ullah 1999 for a discussion of kernel nonparametric regression
estimation). Suppose that we could obtain some estimate of p(.), then one could easily estimate
the parameters of the variance and error distribution using maximum likelihood on the residuals.
Unfortunately, it is very difficult to obtain a satisfactory direct estimate of p(.). In our time series
model, the relevant information set is the entire infinite past, i.e., u(.) = E[y:|Fi—1] depends on the
entire past of the series, so it is infeasible to literally compute this expectation empirically. One could
argue — as do Pagan and Hong (1990) — that consistent estimates of E[y;|F;_1] could be obtained
using nonparametric regression with a truncated information set .7:5(1T ) = {Yi-1,.--,y:_p}, where
P(T) = oo at a very slow rate. This estimate could then be used to obtain consistent estimates of
the parameters of h;. This is not a particularly appealing procedure from a practical point of view
because of the high dimension of the conditioning set. Silverman (1986) dramatically illustrates the
curse of dimensionality by showing the effective sample size needed to achieve a certain precision.

In semiparametric problems where one cannot obtain direct estimates of the nonparametric func-
tion, one can often instead use a semiparametric profile likelihood method as described in Powell
(1994) in which the nonparametric function is estimated for each given parameter value and then

the parameters are chosen to minimize some criterion function that would have been the likelihood



if the functions were known rather than estimated. In general, such parametric estimators are root-
n consistent and asymptotically normal, and the nonparametric estimators are at least consistent.
Unfortunately, in our model, we cannot define the corresponding profiled quantity ﬂd,(ag) so easily,
since o7 depends, in addition to the parameters, on lagged ¢’s, which in turn depend on lagged pu’s.
Therefore, we need to know the entire function p(.) [or at least its values at the T sample points]| to
construct fi,(o7).

This might at first glance appear to make the estimation procedure hopeless, but this is a false
impression. The same sort of issues arise in the estimation of additive nonparametric models and an
enormous literature has arisen that proposes estimation algorithms, and, more recently, distribution
theory, see for example Breiman and Freedman (1985), Hastie and Tibshirani (1990), Opsomer
and Ruppert (1997), and Mammen, Linton, and Nielsen (1998). We borrow from this literature and
suggest an estimation procedure based on iterative updating of both the finite dimensional parameters
¢ and the function p(.). Our procedure first requires picking starting values for y and ¢. We then
define a modified version of the BHHH algorithm to update our estimates of ¢. Finally, we update
our estimates of y using kernel estimates based on the previous iterations filtered log variances. The
main advantage of the procedure is that it relies on only one-dimensional smoothing operations at
each step, so that the curse of dimensionality does not operate. The main disadvantage is that the
procedure is time consuming and may not converge or may converge to local minima.

For convenience we describe our algorithm for the case p = ¢ = 1. We smooth on the log of
variance h; instead of the variance itself. Since the logarithm is a monotonic transformation, the two
approaches are equivalent, but since log variance has a more symmetric distribution with less effect

from outliers, it helps in selecting a bandwidth. Our main algorithm is as follows.
KERNEL ESTIMATION ALGORITHM
1. Choose starting values for ¢ and {u”}7_, which imply {n}7_,.

2. Given {h'""}7_, . calculate

h['rfl]_hgrfl]
Zs K ( 5 ) Ys

Nz[,r} = plr—1]_plr—1] (9)
2 K (Jﬁ—)
fort =1,2,...,T, where 6 > 0 is a small bandwidth parameter, while K is a bounded kernel

satisfying [ K (u)du = 1.



3. Given initial values h([)r](gb) and sg](qﬁ), define recursively for any parameter value ¢
hz[fr] = a+ bhz[fﬂl +c <|5£ﬂ1| - E|5z[‘ﬂ1| + d’fz[ﬂl) )

[r]

&_Lr] _ Y

exp(h)’

for t = 1,2,...,T. Then for any ¢ construct 47’](@5) = l(o; HM)’ the period t contribution to
the 7" likelihood function, where Hm = (/,l,[lﬂ, c ,ugf])/ )

4. Calculate
T . . _1 T .
e S| 3 w0
t=1 t=1
where Ez[fg is the vector of partial derivatives of EET}(QS) with respect to ¢ evaluated at ¢!, Hm'

5. Repeat until convergence. We define convergence in terms of the relative gradient and the

=l } . )

for some small prespecified € (we set ¢ = 107%). Denote the resulting estimates by &5 and p. B

change in the nonparametric estimate, i.e.,

We are unable to prove convergence of the above algorithm, although in practice it seems to work
reasonably well and to give similar answers for a range of starting values. Note that convergence of
the backfitting algorithm for separable nonparametric regression has only been shown in some special
cases, specifically when the estimator is linear in the dependent variable. However, backfitting has
been defined and widely used to estimate more general models than additive nonparametric regression
(see Hastie and Tibshirani 1990), and is widely believed to do a good job in such cases. In addition,
in recent work, Audrino and Biihlmann (2001) have proposed an iterative algorithm for estimating
a nonparametric volatility model. They provided a result on convergence in a special case where a
contraction property can be established. See also Dominitz and Sherman (2001) for some related
results in parametric cases. Unfortunately, no such contraction property can be guaranteed here.

In practice, the estimated parameters of h; appear to be quite robust to different parametric
specifications of the mean equation. The filtered estimate of h; based on u,[to] =71 ZZ:I ys should

be close to the true h; and should provide good starting values. We also use the fitted values from am



EGARCH-M model as starting values to check for robustness. As in the parametric case, additional
iterations should improve the performance of the estimated parameters and function.
The stopping rule (11) was arrived at after some experimentation. It is desirable to ensure that

the entire parameter vector (¢, H) is convergent.

Fourier Series Estimation.

The second approach we consider is to parametrize the mean equation using a flexible functional
form. By letting the number of terms grow with sample size and with a suitable choice of basis
functions, this method can approximate arbitrary functions. This is an example of sieve estimation,
but for a given sample size, it reduces to a parametric method with a finite number of parameters,
and the estimation algorithm is just the standard BHHH algorithm given above.

The basis we will use is a modification of the flexible Fourier form of Gallant (1981) by adding
sine and cosine terms to a linear function. Because it uses trigonometric terms, it is convenient for
the data to lie in the [0, 27] interval. To do so, we recenter and rescale the estimates of h; and define

a new variable

2m
t ( t _) (h _ h) ( )
where h and h are scalars such that h is less than min (k) and h is greater than max (h;). Then the

Fourier approximation is

M M
p(hy) :70+71hr+z¢j51n(jh:)+Z<chos(jh:)- (13)

j=1 j=1

The number of parameters to estimate is p + ¢ + 2M + 5.
4. INFERENCE

There is a general theory of inference for maximum likelihood and quasi-maximum likelihood
estimators in time series, see Wooldridge (1994) for a state of the art survey. Specifically, Boller-
slev and Wooldridge (1992) showed, under high level conditions, that quasi-maximum likelihood
estimators in a parametric GARCH model are consistent and asymptotically normal provided only
that the mean and the variance equations are correctly specified. However, their theory is based
on high-level conditions which are rather difficult to verify even in the simplest cases. Papers that
have derived an asymptotic theory for these models from primitive conditions are: Weiss (1986) for
ARCH models, and Lumsdaine (1996) and Lee and Hansen (1994) for the GARCH(1,1) model. For

other specifications in the GARCH class, the asymptotic theory that is used in practice is not known



to be valid. Similarly, the distribution theory for the EGARCH model of Nelson even in the special
case with no mean effects and normal errors has not yet been established rigorously. However, there
is much simulation evidence to support the normal approximation in this general class of models,
and the results of Bollerslev and Wooldridge (1992) are widely believed to hold more generally, and
are frequently used in practice. Gonzalez-Rivera and Drost (1999) have investigated the efficiency of
various different estimation criteria under different specifications.

Given the complicated structure of our semiparametric model, it is not surprising that we cannot
provide rigorous asymptotic theory for our estimators. However, if h; were observed, a kernel estimate
of u(+) as in (9) would be consistent and asymptotically normal under appropriate conditions, since
the process h; is weakly dependent. Therefore, the results of Robinson (1983) can be applied to
establish consistency, provided §(7') — 0 at an appropriate rate; this argument can be extended to
the case where h; is replaced by a consistent parametric estimate. Indeed, the asymptotic distribution
of nonparametric estimates is usually independent of any preliminary parametric estimation [Powell
(1994)]. We therefore expect fi, to be consistent at the usual nonparametric rate. As regards &5, we
expect it to be v/T consistent and to have a limiting normal distribution with the variance including
some component arising from the estimation of p.

We now turn to the construction of standard errors for the parameter estimates and the risk
premium. In the former case, we report analytical and bootstrap standard errors. The analytical
standard errors are obtained by taking the outer product of the gradient with respect to the estimated
parameters when the GED distribution is used. When the conditional distribution is Gaussian, we
use the Bollerslev-Wooldridge (1992) QMLE standard errors. For the kernel estimator, the estimated
parameters are just ¢, the parameters of the error distribution and the variance process, while for
the series estimator we are estimating these parameters jointly with the pseudo parameters 7 of
the mean function. For the series estimator we therefore compute standard errors from the ma-
trix Y1, éwé;@(b\)]_l, while for the kernel estimators we compute them from the smaller matrix
[thzl éma(ﬁ(a, 7)]7L. The kernel standard errors asymptotically understate the true uncertainty as-
sociated with the parameter estimates, since they neglect the loss of efficiency associated with the
non-parametric estimation of y (+).

The second method of obtaining standard errors is through the bootstrap. There are now many
methods for time series models including some that make very weak assumptions regarding the
dependence structure, like the block bootstrap and the sieve bootstrap. In practice, however, their
performance depends a lot on the implementation and the model structure. We instead prefer a
bootstrap procedure that uses some of our model structure. We give an algorithm for calculating
such confidence intervals for p = ¢ = 1 in the case of the kernel procedure. We use a modified

version of the wild bootstrap (see Hirdle 1990, p 247) because we do not wish to rule out higher
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order conditional heterogeneity, as this is relevant for the sampling variability of our estimators.

WILD BOOTSTRAP ALGORITHM

1. Given estimates p, o, ht(gb i), and & = e, i), calculate the recentered residuals &} = (&, —

! thl &)

2. Let z be a random variable with E(2]) = 0 for j = 1,3 and F(z/) = 1 for j = 2,4. Draw
a random sample {z1, ..., 2r} from this distribution and let £ = & - z;. The variable &} will
satisfy E(ef) = 0, E(e?) = €2, E(}®) = 0, and E(e*) = . We choose z be a discrete
variable which takes values -1 and 1 with equal probability.

3. Given starting values ho and €5, define recursively
he =+ bhyy +0 ([|a:_1| — Bl )] + ng_l) .
and
v = ilhe; {hs}im) +ejor,

with the corresponding choice of p(-). In the case of the kernel estimator, some auxiliary

bandwidth parameter 6 that oversmooths the data should be chosen, where

h L o s;ét ( )y
@ {hs}em,6) = S K ()

whereas for the Fourier series

ﬂ(ilt) =Y+ ’AYliLZ + 7%1 sin (iﬁf) + ¢y cos (@)

with A = (b — b) Gt

4. Given {y;}L_, calculate parameter estimates g%* using the above quasi-Newton procedure.

5. Repeat steps 2-4 m times. The standard errors are estimated from the sample standard

deviation of the bootstrap parameter estimates gAb* [ |

This method of obtaining standard errors is time-consuming for large datasets since it relies on
simulation. However, it should reflect fully the loss of precision associated with estimating u(-).
We impose a condition of symmetry on the errors for simplicity. However, we do not impose the

restriction F(gf?) = 1 because this would require E(z?) = 1/&¢ which is numerically unstable
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and generates paths with very large outliers. Our chosen distribution for zg is the Rademacher
distribution advocated by Davidson and Flachaire (2001) based on Edgeworth expansions.

The second problem, the construction of confidence intervals for zi can be approached in two ways:
we can think of standard errors that are conditional on a value of h; [and therefore allows us to look
at the issue of the shape of the risk premium|, and those that are conditional on all observables and
thus allow us to run real-time experiments, and would be of interest to a decision maker. The second
type is more difficult to construct as h; depends on the infinite past, hence these standard errors
have to be built up recursively.

On the other hand, computing standard errors conditional on the value of h; is rather simple.

For the kernel method, the variance of 1, is given by Hérdle (1990):

iaffk;(uf du
né  f(h)

where f (h;) is the ergodic density of h; evaluated at h;. This quantity can be estimated by replacing

(14)

A~ A~

o2 and f(h;) by estimates 5 and f(h;) respectively.
For the series approximation, we define 7 as the estimated mean parameters and H; be the vector

of slopes, i.e., Ou/0T|. . For instance, for the Fourier series
Hy = (1,h},sin (h}),cos(hy),...,sin(Mh),cos(Mh]))'. (15)

Then,
var [ (hy) |he] = H,var (T) Hy, (16)

where var(7T) is the appropriate submatrix of the covariance matrix of 6 obtained by the bootstrap
method as described above.

Finally, choice of bandwidth is a nontrivial problem here. It is necessary to undersmooth our
estimate of p(-) to obtain good estimates of ¢ as has been pointed out by Robinson (1988) for
example. We adopt a cross-validation approach in which we maximize the likelihood function for
each point on a grid of 6 and choose the value that maximizes the (leave-one-out) likelihood function.
However, to obtain a reasonable choice of bandwidth, it was necessary to remove the outliers when

doing this and we removed 25% at each end of the data.
5. NUMERICAL RESULTS

5.1 EMPIRICAL RESULTS
Data.

12



We examine the monthly excess returns on the most comprehensive CRSP value-weighted in-
dex (including dividends) — the monthly continuously-compounded return on the index minus the
monthly return on the 30-day T-bills— over the period January 1926 to December 2001. The data is
obtained from the Center for Research on Security Prices (CRSP), which includes the NYSE, AMEX,
and Nasdaq and is perhaps the best readily available proxy for ‘the market’. We also conducted an
analysis on the S&P500 series and obtained similar results. The data are plotted in the top panel of
Figure 1. In Table 1 below we report sample moments for the data over the whole sample and two
subsamples, each containing approximately half of the data: T (1926-1961) and IT (1962-2000).

*** FIGURE 1 HERE ***

*** TABLE 1 HERE ***

There is strong evidence of leptokurtosis and negative skewness in the full sample and in both sub-
samples. The table reveals some differences in moments across subsamples. In particular, the first
sub-period has much higher mean and variance, more pronounced negative skewness, and fatter tails
than the rest of the sample. The standard deviation is approximately ten times the size of the
mean, and this appears to support the widely held view that it is fundamentally difficult to estimate
any mean effect in the presence of such large volatility [making the association that global mean
corresponds to signal and global standard deviation corresponds to noise+signal]. However, from the
nonparametric point of view this evidence is not by itself convincing since the global moments are one
end of the smoothing spectrum where bandwidth is infinite; the other end of the smoothing spectrum
is where bandwidth is zero and corresponds to the point mean being equal to the observation itself
and the point standard deviation being the same quantity. To illustrate this point we computed a
running mean and running standard deviation with 7 observations and equal weighting. The results
are in he bottom two panels of figure 1 and show the time-varying nature of the mean and volatility.
At this frequency, the mean and standard deviation are much closer in magnitude. Note also that
this approach to estimating volatility provides similar estimates to those obtained from the dynamic
models that we propose. Estimated volatility is high around well-known events: the Depression
years, World War II, the oil shock and the 1987 crash in both cases.

Estimation.

We first discuss some model selection choices that had to be made. For the series estimator,
values of the tuning parameters of up to 3 were considered with the models selected by the Akaike

criterion (AIC) which maximizes 21n L (w) — 2k where k is the number of parameters in the model
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and the Bayesian criterion (BIC) which maximizes 2In L (w) — klnT. The criteria gave somewhat
conflicting results, but the model with p =2, ¢ = 1, and M = 1 is well liked by both criteria. For
the EGARCH-M model, AIC chooses p = 1 and ¢ = 3 while BIC' chooses p = 1 and ¢ = 1. The
selected model is the second choice for both criteria. For the model with Fourier terms, AIC chooses
p=2,qg=1and M = 2 while BIC chooses p =1, ¢ = l,and M = 0. The selected model is only
marginally worse than these preferred ones. The values p = 2 and ¢ = 1 were also chosen by Nelson
(1991).

We chose the same values of p and ¢ when estimating the model using the kernel approach.
Results for other choices of p and ¢ are available from the authors upon request. It is difficult to
compare the fit of the model estimated with the kernel for various values of p and ¢ as the models
are then non-nested. As explained above, the bandwidth was selected by cross-validation over a grid

of potential bandwidths. The bandwidth has the form:
§ = ko (h) T3, (17)

where o (h;) is the standard deviation of h, updated at each iteration to reflect the new estimates
of h;. The bandwidth constant k is allowed to vary between 0.5 and 2.5 in increments of 0.1, and the
estimated value of £ is the one that produces the highest value of the cross-validated likelihood. We
set the values of h and h at -10 and -2 respectively based on the results from the kernel estimation
which does not impose such restrictions. We also check to ensure that there is no value of h; outside
of these values in the course of optimization.

We now turn to the estimation results. The results from the estimation using the two methods

considered here and their associated standard errors (ses(¢)) are presented in Table 2.
**% TABLE 2 HERE ***

Our parameter estimates appear quite robust to the method chosen to do the estimation. They are
also consistent with many other studies in the area such as Nelson (1991), Glosten, Jagannathan,
and Runkle (1993) or Bollerslev, Engle, and Nelson (1994). In particular, volatility persistence is
quite high (the sum of the estimates of b; and by is well over 0.9), and the estimate of the leverage
effect d is negative. However, this parameter is not precisely estimated with the kernel procedure
and is not significantly different from 0. Finally, the estimated value of v is around 1.4 which is again
consistent with previous findings. The distribution we find has fatter tails than the normal which
is a special case with v = 2. Note that the bootstrap standard errors tend to be larger than the
analytic standard errors, sometimes dramatically so. The QMLE standard errors are not appreciably
different from those obtained from the estimation with the GED.

14



The last row of Table 2 provides results of a likelihood ratio test for the significance of the
coefficients on the nonlinear terms in the Fourier series. The results clearly show that linearity is

strongly rejected at usual significance levels.

*** FIGURE 2 HERE ***

The risk premium estimated using the kernel method is graphed in the top left corner of Figure
2 as a function of h;. Confidence intervals at the 95% level constructed using the pointwise kernel
confidence intervals are also provided. The figure clearly reveals a non-monotonic relation between h;
and F [y, |F;_1] . This is consistent with the findings of Backus and Gregory (1993), Whitelaw (2000),
and Veronesi (2001) that in general equilibrium, the risk premium may have virtually any shape.
Although the estimated risk premium is not significantly different from a constant at this level for
some part of its range, the evidence is stronger in the middle range h; € [—7.5, —5.5], which is where
most of the data lie [the bottom left corner of Figure 2 plots the marginal density]. The evolution
of the estimated risk premium, conditional standard deviation, and Sharpe ratio (in monthly terms)
are presented in Figure 3. The episodes of high volatility revealed by this figure coincide closely with
those obtained by a simple running average as done in Figure 1. Note that stocks were a great deal

in the 1990s according to the Sharpe ratio but that they have become much less so in recent years.

*** PIGURE 3 HERE ***

The top right panel of Figure 2 provides the shape of the risk premium estimated using the Fourier
series. The graph also includes the analytical 95% confidence intervals conditional on h;. Again, the
estimated shape is nonlinear.

The two smoothing methods both have advantages and disadvantages. The kernel estimate
appears rather wiggly in the end points where there is not much data. The Fourier series method
on the other hand is very smooth and gives the appearance of being precisely estimated. However,
there is a pronounced upward slope at the high end, which seems at odds with the kernel method
finding. This end-trend is quite symptomatic of these polynomial-based methods; we view it with
some skepticism. Notice also the difference in the standard errors for the two methods. The Fourier
series method has a confidence band whose width is almost the same throughout the shown range,
while the confidence band for the kernel is very wide at the end points, which reflects the relative
paucity of the data in this region. Thus the Fourier series confidence band gives the appearance of

being very precisely estimated in a region where we have little data. This is because it is a global
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fitting method that draws its estimates from all the data. We thus redraw the two estimates on the
same plot in the bottom right corner of Figure 2. The methods agree quite closely - there is a hump
shape, which is first concave and then convex.

Finally, we provide some diagnostics on the standardized residuals & = (y; — fi,)/0¢. We just
report the results for the kernel, but similar results have been obtained for the series approach. The
plots of the autocorrelogram of both the residuals and their squares indicates that they are close to
white noise: there are 4 significant autocorrelation coefficients at the 5% level among the first 100

lags in the levels and 5 significant autocorrelations in the squares.

*** FIGURE 4 HERE ***

Subsample Estimation.

In order to see how robust our estimates are, we re-estimated the model over two sub-samples:
1926-1961 and 1962-2001 using the kernel method. The results are presented in Table 3 below (with

analytical standard errors in parentheses).
A% TABLE 3 HERE ***

The results show quite a bit of instability in the point estimates. Figure 5 shows the estimated risk
premium using the same scale as in the other figures. Because the last subsample is characterized
by lower volatility than the beginning of the sample, the estimated log-volatility is concentrated
towards the left of the graph for that period. The risk premium we estimate in the second period
is much flatter than that of the first period because of the much larger bandwidth constant chosen,
though the point estimate suggests a similar non-monotonic shape as for the full sample and the first

subsample.

*** FIGURE 5 HERE ***

5.2 MONTE CARLO

In order to appreciate the performance of our kernel procedure in estimating the risk premium in
financial data, we carried out four simulation experiments. Each experiment is repeated 5000 times
on samples of size 500. To make the experiments as realistic as possible, the parameters of each
experiment are set to values estimated from our dataset. The data generating processes used for the

experiments are presented in Table 4.
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*** TABLE 4 HERE ***

The first simulation experiment involves generating a risk premium from a linear model. We thus
estimated an EGARCH-M model with GED errors from the data (these are the results presented in
the last column of Table 2) and used it to generate 5000 samples. We then applied our non-parametric
procedure to these simulated samples. The results are presented in the upper left panel of Figure
6. The solid line represents the true risk premium which is linear. The line with the long dashes
is the median estimated function at each point on our equispaced grid. The short dashes represent
the 25th and 75th percentile respectively. The method appears to do quite well as the median
estimate deviates from the true function marginally for all values of the log conditional variance.
The interquartile range of the estimates is relatively narrow in the middle of the distribution, but it

increases dramatically for large or small volatility as there is less data.

*** FIGURE 6 HERE ***

The second experiment used the model estimated by the Fourier series and GED errors presented
in the previous section to generate the data. The results for this experiment are in the upper right
panel of Figure 6. The kernel procedure unveils the nonlinear mean function well except for small
log conditional variance.

The third experiment is a GARCH-M model with normal errors and linear mean. This experiment
is designed to check the robustness of our results to misspecification in the conditional variance process
and the innovation density (the parametric components of our model). The results are in the lower
left panel of the figure. The kernel procedure discovers the linear mean very well. However, the
confidence bands are very wide reflecting the additional uncertainty caused by misspecification.

Finally, the last experiment consists of a GARCH model with normal errors and mean function
estimated with Fourier series. Once again, the mean function is well estimated where most data lies,
but the uncertainty is once again large due to misspecification.

Table 5 presents the median and interquartile ranges for the estimated parameters over the
5000 replications. Some of these parameters are difficult to interpret since the estimated model is
misspecified in experiments 3 and 4. For experiments 1 and 2 in which the model is correctly specified,
we see that the procedure estimates most parameters well. It has a tendency to underestimate c;, the
effect of past innovation on the log conditional variance. Also, it does not distinguish well between
the effect of h;_1 and h; o individually in experiment 2, although the overall persistence is well

estimated. For the two misspecified models where data is generated from a GARCH(1,1) model,
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the parameter values appear reasonable as they suggest a single lag of h;_; and no leverage effect.

Moreover, the normality of the innovations is well discovered.

*** TABLE 5 HERE ***

Overall, these results suggest that our kernel procedure performs well in uncovering possible
nonlinearities in the data. Yet, if the model were truly linear, the procedure would not mislead us.

It is thus a useful tool for looking at the shape of the risk premium.

6. CONCLUSIONS

We have found a highly nonlinear relationship between the first two moments of index returns
as suggested by Backus and Gregory (1993) and Gennotte and Marsh (1993). In particular, the risk
premium appears to be non-monotonic and indeed hump-shaped. This result appears to be quite
robust to the estimation method and the tuning parameters selected. However, the estimated risk
premia are subject to quite a bit of variability and are not uniformly significantly different from
zero at the 95% level. This and some instability over time must temper our interpretations to some

degree.
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Tables and Figures

Table 1. Raw Data by Sub Period

Full sample 1926:1-1961:12 1962:1-2001:12

Mean (x100) 0.4987 0.6686 0.3457
Variance (x100) 0.3031 0.4132 0.2043
Skewness -0.5037 -0.4224 -0.7422
Excess Kurtosis 6.8015 3.5760 2.8460
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Table 2. Full Sample Estimates

f_

Ty — Ty _ut+gt€t

hy =1n (0?) =a+bihi_1 + bohi—o +c1 (|ee1| — Elet—1| — di—1)

Fourier: p1, = 7o 4+ v1hi + ¥y sin (h}) + ¢ cos (h7)

et ~GED (v)or N(0,1)

Kernel-GED Kernel-QMLE Fourier-GED  Fourier-QMLE EGARCH-M

a —0.311 —0.222 —0.407 —0.399 —0.340
(0.112)  (0.209)  (0.089) (0.196)  (0.085)  (0.177) (0..136)  (0.163) (0.109)

by 0.780 0.978 0.452 0.379 0.353
(0.333)  (0.417)  (0.097) (0.432)  (0.150) (0.146) (0..181)  (0.116) (0.138)

by 0.169 —0.015 0.484 0.555 0.593
(0.325)  (0.402)  (0.086) (0.419)  (0.147)  (0.154) (0.179)  (0.117) (0.136)

c1 0.293 0.260 0.241 0.254 0.267
(0.091) (0.088)  (0.053) (0.099)  (0.029) (0.117) (0.039)  (0.053) (0.048)
d —0.142 —0.080 —0.763 —0.721 —0.536
(0.122) (0.222)  (0.122) (0.211)  (0.131)  (0.355) (0..190)  (0.175) (0.182)

v 1.444 - 1.425 - 1.419
(0.078)  (0.121) (0.088)  (0.192) (0.844)
Yo - - —0.370 —0.363 —0.003
(0.022)  (0.157) (0.131)  (0.102) (0.003)

02 - - 0.117 0.115 0.002
(0.006)  (0.054) (0.039)  (0.034) (0.000)

(8 - - 0.137 0.133 -

(0.009)  (0.050) (0.047)  (0.036)
N - - —0.009 —0.007 -
(0.010)  (0.021) (0.014)  (0.024)

Bandwidth constant 0.9 0.9 - - -

Likelihood 1502.3 1489.5 1510.8 1493.5 1507.2
Linearity test
- - 7.369 8.956 -
Hy:1p, =p; =0,i>1 (0.025) (0.011)

(p—value)

Note: The numbers in parentheses are analytical and wild bootstrap standard errors respectively. For the
GED, the analytical standard errors are from the outer-product of gradient (OPG), while for the QMLE,
the analytical standard errors are those of Bollerslev and Wooldridge (1992).
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Table 3. Sub-period Estimates

1926-1961 1962-2001

a —0.135 —0.754
(0.088) (0.216) (0.473) (0.718)

by 1.137 0.469
(0.468)  (0.465) (0.334)  (0.488)

ba —0.159 0.411
(0.460)  (0.454) (0.333)  (0.467)

cy 0.223 0.341
(0.118) (0.116) (0.137)  (0.108)

d —0.098 —0.244
(0.165)  (0.779)  (0.229)  (0.476)

v 1.444 1.487
(0.125)  (0.177)  (0.107)  (0.194)

Bandwidth constant 0.7 2.5
Likelihood 680.7 829.9

Note: See table 2.

Table 4. Data Generating Processes Used for the Simulation Experiments

Experiment 1: Linear mean, EGARCH conditional variance, and GED errors

11, = —0.003 — 0.002A,
hy = —0.340 + 0.353h,_1 + 0.593h,_s + 0.267 (|er—y| — E |e,—1| — 0.536e,_1)
e, ~ GED (1.419)

Experiment 2: Fourier mean, EGARCH conditional variance, and GED errors

4, = —0.370 + 0.117h* + 0.137sin (h¥) — 0.009 cos (h?)
ht = —0.407 + 0.452]1,5_1 + O.484ht_2 +0.241 (|5t—1| —F |5t—1| — 0.763€t_1)
e, ~ GED (1.425)

Experiment 3: Linear mean, GARCH conditional variance, and normal errors

11, = 0.013 + 0.001%,
o2 = 7.402 x 1075 + 0.86702_, + 0.109u2_,
Et ~ N (0, 1)

Experiment 4: Fourier mean, GARCH conditional variance, and normal errors

py = —0.229 + 0.073h} + 0.082sin (h}) — 0.006 cos (h;)
0? =7.163 x 107° + 0.86707_; + 0.117u?_,
gy ~~ N (0, 1)
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Table 5. Median Estimated Parameters in Simulation Experiments

Exp. 1 Exp. 2 Exp. 3 Exp. 4
a —0.340 —0.382 —0.273 —0.181
(—0.489,-0.267)  (—0.598,—0.242)  (—0.417,—0.146) (—0.326,—0.086)
by 0.375 0.715 0.890 0.978
(0.352,0.766) (0.415,1.155) (0.423,1.351) (0.596,1.391)
by 0.545 0.190 0.045 —0.027
(0.148,0.593) (0.219,0.494) (—0.402,0.498) (—0.429,0.348)
c1 0.216 0.136 0.199 0.196
(0.129,0.267) (0.081,0.199) (0.122,0.267) (0.120,0.237)
d —0.536 —0.838 —0.029 —0.010
(—0.823,—0.444)  (—1.335,—0.531)  (—0.211,0.123) (—0.160,0.137)
v 1.419 1.411 1.969 1.981
(1.346,1.460) (1.325,1.506) (1.813,2.136) (1.833,2.143)

Note: Entries are the median of the estimated parameters over the 5000 replications. The entries in paren-

theses are the 25th and 75th percentile over the 5000 replications respectively.
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Figure captions

Figure 1. Data. The top panel is a time plot of the continuously compounded returns on the
CRSP value-weighted index, 1926-2001. The middle panel is a rolling mean estimate of the risk
premium obtained as a moving average using a window width of seven and equal weighting. The
bottom panel is a rolling estimate of the standard deviation of the excess returns also using a window

width of seven observations and equal weighting.

Figure 2. Empirical Results for the Full Sample. The top left panel is the kernel estimate of
the risk premium as a function of the log conditional variance. The solid line represents the point
estimate and the dashed lines are the limits of a 95% confidence interval computed using (14). The
top right panel is similar but uses the Fourier series estimator. The bottom left panel plots the
marginal density of the log conditional variance. Finally, the bottom right panel superposes the
point estimates from the kernel and Fourier series. Note that the horizontal scale is the same for all

panels and that the vertical scale is the same for all panels except the lower left one.

Figure 3. Time Plots of Kernel-Estimated Risk Premium, Standard Deviation, and Sharpe Ratio.
The top and middle panels plot the estimated risk premium and standard deviation over time. The
bottom panel plots the estimated Sharpe ratio as the ratio of the estimated risk premium to the

estimated standard deviation. The results are in monthly terms and have not been annualized.

Figure 4. Autocorrelation of Standardized Residuals and Their Squares. The top panel plots the
autocorrelation function of the standardized residuals obtained from the kernel estimator for the first
100 lags along with the asymptotic 95% confidence bands under independence. The bottom panel

plots the same information for the squared standardized residuals.

Figure 5. Subsample Results. The figure provides kernel estimates of the risk premium for the
two subsamples along with the 95% confidence bands. The scales are identical to those in figure 2.
The top panel provides results for the first subsample, 1926:1-1961:12, while the bottom panel gives
the same information for the second subsample, 1962:1-2001:12.

Figure 6. Monte Carlo Results. This figures reports the results on the estimated risk premium
from the four simulation experiments. In each panel, the solid line is the true relationship, the long-
dashed line is the median among the 5000 replications and the short-dashed lines are the 25th and

75th percentile respectively. The scales are the same as those in figures 2 and 5.
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Fig. 1. Monthly excess returns
CRSP value-weighted index
1926-2001
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Figure 3. Time plots of estimated guantities
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Figure 4. Autocorrelation of standardized residuals and squares
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