
Abstract

We extend the local-to-zero analysis of models with weak instruments to models

with estimated instruments and regressors and with higher-order dependence between

instruments and disturbances. This framework is applicable to linear models with

expectation variables that are estimated non-parametrically such as the risk-return

trade-off in finance and the impact of inflation uncertainty on real economic activity.

Our simulation evidence suggests that Lagrange Multiplier (LM) confidence intervals

have better coverage in these models. We apply these methods to excess returns on

the S&P 500 index, yen-dollar spot returns, and excess holding yields between 6-month

and 3-month Treasury bills.

JEL classification: C22, C32, G12



Semi-Parametric Weak Instrument Regressions with

an Application to the Risk-Return Trade-off∗

Benoit Perron†

This version: February 2002

∗Thanks go to two referees, the Editor, Peter Phillips, Oliver Linton, Donald Andrews, Hyungsik Moon,

John Galbraith and seminar participants at Yale, Toronto, Montréal, Concordia, Rutgers, Windsor, Florida

International University, and the 2000 World Congress of the Econometric Society for helpful comments

and suggestions. The usual disclaimer necessarily applies. Financial assistance from the Alfred P. Sloan

Foundation, the Social Science Research Council of Canada, the Fonds pour la Formation des chercheurs

et l’aide à la recherche (FCAR), and the Mathematics of Information Technology and Complex Systems

(MITACS) network is gratefully acknowledged.
†Département de sciences économiques and CRDE, Université de Montréal, C.P. 6128, Succursale Centre-

ville, Montréal (Québec), H3C 3J7. E-mail: benoit.perron@umontreal.ca.



1. Introduction

Recently, the problem of weak correlation between instruments and regressors in instrumental

variable (IV) regressions has become a focal point of much research. Staiger and Stock (1997)

developed an asymptotic theory for this type of problem using a local-to-zero framework.

They show that standard asymptotics for IV estimators can be highly misleading when this

correlation is low. Following this methodology, Zivot, Startz, and Nelson (1998), Wang and

Zivot (1998), and Startz, Nelson, and Zivot (2001) show that usual testing procedures are

unreliable in such situations, while Chao and Swanson (2000) provide expressions for the bias

and MSE of the IV estimator based on higher-order asymptotic approximations. Extensions

of this approach to nonlinear models have been developed in Stock and Wright (2000) .

Earlier analyses of models under partial identification conditions are given in Phillips (1989)

and Choi and Phillips (1992), and Dufour(1997).

This paper extends the weak instrument literature using the Staiger and Stock framework

in two ways: first, we analyze a restricted class of semi-parametric models in which both

regressors and instruments are estimated, and second, we allow for higher-order dependence

between the instruments and the disturbances. These extensions are meant to make the

analysis applicable to the many theoretical models in finance and macroeconomics that

suggest a linear relationship between a random variable and an expectation term of the

general form,

yt = γ0xt + δ0Zt + et (1.1)

where yt is a scalar, xt is a vector of exogenous and predetermined variables, and Zt is a
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vector of unobservable expectation variables.

The estimation of these models has proven difficult because a proxy has to be constructed

for the unobservable expectation term. A complete parametric approach would assume

functional forms for the expectation processes of agents which can then be estimated along

with (1.1) by, for example, maximum likelihood. A semi-parametric approach, which is of

interest in this paper, leaves the functional form of the expectation terms unspecified but

uses the linear structure in (1.1) to estimate the parameters of interest once estimates of the

expectation terms are obtained.

Of particular interest is the case where Zt is a conditional variance term, and in this

framework, interest centers on the parameter δ as it measures the response of yt to increased

risk. One such example includes the risk-return trade-off in finance where agents have to be

compensated with higher expected returns for holding riskier assets. This trade-off has been

examined by several authors, including French, Schwert, and Stambaugh (1987), Glosten,

Jagannathan, and Runkle (1993), and Braun. Nelson, and Sunier (1995) , and a good survey

can be found in Lettau and Ludvigson (2001). In this case, Zt is the conditional variance of

the asset, and xt would generally include variables measuring the fundamental value of the

asset. A second example is the analysis of the effect of inflation uncertainty on real economic

activity where Zt is the variance of the inflation rate conditional on past information, and

yt is some real aggregate variable such as real GDP or industrial production.

In the case where Zt is a variance term, Engle, Lilien, and Robins (1987) have introduced

the parametric AutoRegressive Conditional Heteroskedasticity-in-Mean (ARCH-M) model
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which postulates that Zt = σ2t , the variance of returns, follows an ARCH(p) model. A

popular generalization is the Generalized ARCH-M (GARCH-M) model with σ2t of the form:

σ2t = α0 + α1e
2
t−1 + . . .+ αpe

2
t−p + β1σ

2
t−1 + . . . + βqσ

2
t−q (1.2)

with (1.1) and (1.2) estimated jointly by maximum likelihood. Two problems surface when

using such models. First, global maximization of the likelihood function can be difficult

unless p and q are kept small. Second, estimates in the mean equation will be inconsistent

if the variance equation is misspecified because the information matrix is not block diago-

nal. Given the lack of restrictions on the behavior of the conditional variance provided by

economic theory, this seems quite problematic.

An alternative approach that is robust to specification was suggested by Pagan and Ullah

(1988) and Pagan and Hong (1991). Their suggestion is to first replace Zt by its realized

values, say Yt, estimating this quantity non-parametrically, and using a non-parametric esti-

mate of Zt as an instrument. This approach is itself problematic since it does not solve the

necessity to keep the number of conditioning variables low due to the curse of dimensional-

ity. Moreover, a common problem when using such a semi-parametric approach is that the

estimated conditional variance is poorly correlated with bYt, the estimated realized values.
This paper will focus on addressing this second problem. The first problem is addressed by

using a semi-parametric estimator suggested by Engle and Ng (1993).

It will turn out that weak instrument asymptotics are useful in improving the quality

of inference in this class of models. In particular, the use of confidence intervals based on

the Lagrange multiplier principle provide much better coverage than more standard Wald
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confidence intervals.

The rest of the paper is divided as follows: section 2 presents the instrumental variable

procedure described above in detail under the standard assumptions. In section 3, we present

evidence on the presence of weak instruments in the risk-return trade-off. Next, in section 4,

we develop asymptotic theory for the instrumental variable estimator described above under

the weak instrument assumption. In section 5, results from a simulation experiment are

presented to outline the difficulties involved in carrying out analysis in this type of models.

Section 6 contains the results from applying the techniques developed in previous sections

to three financial data sets: excess returns on the Standard and Poor’s 500 index, yen-dollar

spot returns, and excess holding yields on Treasury bills. Finally, section 7 provides some

concluding comments.

2. Semi-parametric models with conditional expectations

As discussed above, we consider linear models such as,

yt = γ0xt + δ0Zt + et (2.1)

where yt is a scalar, xt is a k1×1 vector of exogenous and predetermined variables, and Zt is

a k2 × 1 vector of unobservable expectation variables. One example of particular interest is

where Zt is a vector of variances and covariances of a vector ψt of the form vech (E [Yt|Ft]),

with Yt = (ψt −E [ψt|Ft]) (ψt − E [ψt|Ft])0 and where Ft is the information set available

to agents in the economy at the beginning of period t. In this framework, interest centers

on the parameter δ as it measures the response of yt to an increase in the measure of
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risk. Such models were first investigated along the lines followed here by Pagan and Ullah

(1988). In addition to that paper, the proposed IV estimator has been applied in Pagan and

Hong (1991), Bottazzi and Corradi (1991), and Sentana and Wadhwani (1991). Except for

Pagan and Ullah, all these papers analyze the trade-off between financial returns and risk

as postulated by mean-variance analysis. Pagan and Ullah look at the forward premium in

the foreign exchange market and the real effects of inflation uncertainty.

The first step in tackling this problem is to replace the conditional expectation Zt by

its realized value Yt. In the following, we assume that Yt is not observable as is the case in

the variance example since Yt is itself a function of an expectation. Thus, an extra step is

required in replacing Yt by an estimate, bYt. The model to be estimated is then:
yt = γ0xt + δ0bYt + et + δ0

³
Yt − bYt´+ δ0 (Zt − Yt)

= γ0xt + δ0bYt + ut
In general, an ordinary least squares regression of yt on xt and bYt will lead to inconsistent
estimates of γ and δ due to the correlation between bYt and (Zt − Yt). The solution suggested
by Pagan (1984) and by Pagan and Ullah (1988) is to use an instrumental variable estimator

with bZt used as instruments for bYt. In fact, to obtain consistent estimates, any variable in Ft
could be used as instrument. We could consider finding an optimal instrument as E

hbYt|Fti
which in general will be different from bZt because of the bias arising from the estimation of

Yt. The steps used to construct the estimator are illustrated as follows:
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Zt −→
replace with

Yt →
estimate with

bYt →
instrument with

bZt

This problem will be semi-parametric when Yt and Zt are estimated non-parametrically.

As in many semi-parametric models, despite the lower rate of convergence of the non-

parametric estimators, the estimates of γ and δ will converge at the usual
√
n rate under

certain conditions where n is the sample size.

Define Zt = (xt, Zt), Y t = (xt, Yt) , Z =
¡
Z1, . . . , Zn

¢0
, Y =

¡
Y 1, . . . , Y n

¢0
with eZ and eY

similarly defined but with bZt and bYt replacing Zt and Yt. Further let ut = et + δ0 (Zt − Yt)

and θ = (γ, δ)0. Consider the IV estimator for this model:

bθ = ³ eZ 0eY ´−1 eZ 0y
Andrews (1994) proved the asymptotic normality of this estimator. There are two condi-

tions of interest here: the first one is that bY be √n-consistent. This ensures that the asymp-
totic distribution of the IV estimator of bθ is not affected by replacing Yt and Zt by bYt and
bZt respectively. This will generally not be the case when bY is estimated non-parametrically.
However, it will hold in the special case where Zt is a variance term as long as the mean

of E [ψt|Ft] is estimated at rate n1/4. Conditions under which this holds can be found in

Andrews (1995).

The second key assumption is that the matrix n−1 eZ 0eY converge to a nonsingular limit.

It is a key assumption because the quality of the instrument bZt will determine the quality
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of the asymptotic approximation obtained by Andrews (1994) . This assumption is nearly

violated in many practical situations, and this is the motivation for the development of the

weak instrument literature. The next section will document this phenomenon for financial

data.

3. Evidence of weak instruments

In the case of interest in which Yt = e2t and Zt = σ2t , it will generally be the case that the

correlation between the two estimates, be2t and bσ2t , is very low, suggesting a weak instrument
problem. Table 1 shows the value of R2 for the regression of be2t on a constant and bσ2t for
three financial data sets using two different non-parametric estimators.

The first data set analyzed represents monthly excess returns on the Standard and Poor’s

500 between January 1965 and December 1997 measured at the end of each month. The

data is taken from CRSP, and the risk-free rate is the return on three-month Treasury bills.

The second data set is made of monthly returns on the yen-dollar spot rate obtained from

International Financial Statistics between September 1978 and June 1998. Finally, the last

data series consists of quarterly excess holding yields on 6-month versus 3-month Treasury

bills between 1959:1 and 2000:2. A similar, but shorter, data set has already been analyzed

by Engle, Lilien, and Robins (1987) using their ARCH-M methodology and Pagan and Hong

(1991) using the above instrumental variable estimator. The three data sets are plotted in

figure 1.

**** Insert figure 1 here ****
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The first nonparametric estimator is based on multivariate leave-one out kernel. First,

we estimate the mean of yt and y2t ,denoted τ 1t and τ 2t respectively, as:

bτ jt =
P

i 6=t y
j
iK
³
wi−wt
bj

´
P

i6=tK
³
wi−wt
bj

´
for j = 1, 2 with the kernel function K (w) taken to be the multivariate standard normal.

The bandwidth bj and the number of lags of yt in the conditioning set pj are selected using a

modified version of the criterion suggested in Tjostheim and Auestad (1994) that penalizes

small bandwidths and large lag lengths. Accordingly, we choose the bandwidth (bj) and lag

length (pj) so as to minimize

ln

"
1

n

nX
t=1

¡
yjt − bτ jt¢2

#
+
lnn

n

µ
K (0)

bj

¶pj Pn
t=1

(yjt−bτjt)2
f(wt)Pn

t=1

¡
yjt − bτ jt¢2

whereK (0) is the kernel evaluated at 0 and f (wt) is the density of the conditioning variables.

The bandwidth takes the form:

bj = cjsn
− 1
4+pj

where s is the standard deviation of yt and cj is a constant to be selected. We then define

be2t = (yt − bτ 1t)2 and obtain an estimate of σ2t as:
bσ2t = bτ 2t − (bτ 1t)2 .

A theoretical analysis of this non-parametric estimator of the conditional variance can

be found in Masry and Tjostheim (1995). In order to avoid unbelievably small bandwidth

choices for all three series, we left out outliers in the bandwidth selection process. The

extreme 25% of the data was not used in the computation of the information criteria.
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The second estimator was first proposed by Engle and Ng (1993). It provides more

structure to the conditional variance and will approximate the conditional variance function

much better than the kernel when the variance is persistent (see Perron (1999) for simulation

evidence). The estimator is implemented by first estimating the mean by a kernel estimate

as above and then fitting an additive function for σ2t as follows:

σ2t = ω + f1 (bet−1) + . . .+ fp (bet−p) + βσ2t−1

where the fj (·) are estimated as splines with knots using a Gaussian likelihood function. This

allows for a flexible effect of recent information on the conditional variance while allowing for

persistence. This framework includes most parametric models suggested in the literature such

as the GARCH class. The number of segments in the spline functions acts as a smoothing

parameter and is selected using BIC. The knots in the spline were selected using the order

statistics such that each bin has roughly the same number of observation subject to the

constraint of an equal number of bins in the positive and negative regions.

**** Insert table 1 here ****

A quick look at table 1 reveals that only the excess holding yield data has R2 greater

than 5.5%. The reason for this low correlation is that e2t and σ2t have very different volatility.

Even if E [e2t |Ft] = σ2t , financial returns are extremely volatile and therefore, the difference

between e2t and σ2t can be quite large. This is true even if we did not have to estimate these

two quantities; having to estimate them complicates matters further. We can illustrate by
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looking at the GARCH(1,1) model:

yt = µ+ σtεt = µ+ et

σ2t = ω + αe2t−1 + βσ2t−1.

Andersen and Bollerslev (1998) show that the population R2 in the regression

(yt − µ)2 = a0 + a1bσ2t + vt
where bσ2t is the one-period ahead forecast obtained from the GARCH model is

R2 =
α2

1− β2 − 2αβ

which will in general be very small even though E
£
(yt − µ)2 |Ft

¤
= σ2t . Figure 2 plots the

value of R2 for different values of α and β for thsi GARCH(1,1) example. The value of

R2 is highly sensitive to the value of α, and this reflects that α = 0 makes the model

unidentified. It is usual in the literature to find point estimates of GARCH(1,1) models in

the neighborhood of α = 0.05 and β = 0.9. The figure clearly shows that for such values,

the correlation between e2t and σ2t will typically be quite low. The problem in this case is

that σ2t has very low variance relative to that of y
2
t ; a low value of α means that σ

2
t is nearly

constant locally.

**** Insert figure 2 here ****

We can expect that table 1 does not even provide an accurate picture of the problem of

weak instruments. Using data sampled at higher frequency (e.g. daily or even intra-day)
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would result in even lower correlation. The lower frequency allows some averaging which

reduces the variance of e2t . Potentially a better solution is to use “model-free” measures of

volatility such as those proposed by Andersen, Bollerslev, Diebold, and Labys (2001) which

are obtained by summing squared returns from higher frequency data. We do not pursue

this possibility here, but note that its variance-reducing property could be helpful in this

context.

4. Asymptotics with weak instruments

Staiger and Stock (1997) have recently shown, in the framework of a linear simultaneous

equation system, that having instruments that are weakly correlated with the explanatory

variables makes the usual asymptotic theory work poorly. Their assumed model is:

y = Y δ +Xγ + u (4.1)

Y = ZΠ+XΓ+ V (4.2)

where Y is the matrix of included endogenous variables that are to be replaced by at least

k2 instruments. Since in our case, it will always be true that the model is exactly identified

(that is, there will be as many regressors as instruments since the instruments are estimates

of the expected value of the regressors), we will concentrate on the case where Z is a n× k2

matrix. The weak instrument assumption is imposed by assuming that:

Π =
G√
n

(4.3)
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for some fixed k2 × k2 matrix G 6= 0 This assumption implies that in the limit, Y and Z are

uncorrelated.

We extend the analysis of weak instruments in Staiger and Stock (1997) to our case of

interest by allowing Y and Z to be unobserved and estimated by bY and bZ respectively.

Moreover, we allow for the possibility of higher-order dependence between the instruments

and the disturbances. Simple algebra leads to:

bY = bZΠ+ ³Z − bZ´Π+ ³bY − Y ´+XΓ+ V

= bZΠ+XΓ+ ζ

so that the correlation between bYt and bZt is also low.
There might be two reasons for a low correlation between the estimated instrument and

explanatory variable in a given data sample. The first may be that the estimators used in

constructing bZ and bY are poor and will not approach their true value in small samples. On
the other hand, the estimators may not be poor in any sense, but Y and its expected value

may be weakly correlated such as in the GARCH(1,1) example above.

Recall that the IV estimator of δ is:

bδ =
³ bZ 0Mx

bY ´−1 bZMXy

= δ +
³ bZ 0MX

bY ´−1 bZ 0MXu

where MX = I − X (X 0X)−1X 0. In order to derive the distribution of bγ, we need to make
an extra assumption on the reduced-form coefficients of X. We will also assume that they
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are local to zero:

Γ=
H√
n

(4.4)

for some k1 × k2 matrix H 6= 0. This assumption is made because if Γ were fixed, X and Y

would be collinear in the limit and the moment matrices would be singular, and it plays no

role in the analysis of the behavior of bδ.
The distribution of the estimators is given in the following theorem. All proofs are

relegated to the appendix.

Theorem 4.1. In the model (4.1)− (4.3), assume the following:

1.
√
n
³bY − Y ´ p→ 0;

2. bZ = Z + op (1) , Z <∞ a.s.;

3. θ0 is the interior of Θ ⊂ Rk+1;

4. (n−1X 0X, n−1X 0Z, n−1Z 0MXZ)
p→ (
P

XX ,
P

XZ,
P

ZZ) ;

5.
³
n−

1
2X 0u, n−

1
2Z 0MXu, n

− 1
2X 0V, n−

1
2Z 0MXV

´
⇒ (ΨXu,ΨZu,ΨXV ,ΨZV ).

Define:

σZu = lim
n→∞

1
n

P
s

P
t Z

⊥
s u

0
tusZ

⊥0
t

σZV = lim
n→∞

1
n

P
s

P
t Z

⊥
s V

0
sVtZ

⊥0
t

σXu = lim
n→∞

1
n

P
s

P
tXsu

0
sutX

0
t
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σXV = lim
n→∞

1
n

P
s

P
tXsV

0
sVtX

0
t

ρZ = lim
n→∞

1
n

Pn
t=1

Pn
s=1 Z

⊥
t V

0
t σ
−1
2
0

ZV σ
− 1
2

ZuusZ
⊥0
s

ρX = lim
n→∞

1
n

Pn
t=1

Pn
s=1XtV

0
t σ
− 1
2
0

Zv σ
− 1
2

ZuusXs

where Z⊥t is the residuals from the projection of Zt onto X, i.e. it is the transpose of the

tth row of Z⊥ =MXZ.

Then,

1. bδ−δ d→ Ξ = σ
− 1
2

ZV (λ + zv)
−1 σ

1
2
Zuzu with λ = σ

−1
2

ZV

P
ZZ G,where zu = zvρZ+(1− ρZρ

0
Z)

1
2 ξ,

and (vec (zv) , ξ) ∼ N
¡
0, Ik2(k2+1)

¢
,

2. In addition, with (4.4) ,
√
n (bγ − γ)

d→P−1
XX

h
σ
1
2
Xuxu +

³P
XZ G+

P
XX H + σ

1
2
XV xv

´
Ξ
i
,

where xu = xvρX +
¡
Ik1 − ρXρ

0
X

¢ 1
2 ζ, and (vec (xv) , ζ) ∼ N

¡
0, Ik1(k2+1)

¢
.

Assumptions 1-3 of the theorem are the same as used by Andrews (1994) to derive the

asymptotic distribution of bθ, while assumptions 4 and 5 are similar to those of Staiger and
Stock (1997) . Several aspects of this result can be pointed out, all the outcome of the poor

identification of δ. First, the IV estimator of δ does not converge to the true population

value, but rather to a random variable as in Phillips (1989). Second, the limit distribution is

the ratio of correlated normal random variables. This suggests that the distribution will, in

some cases, have thick tails and be bimodal. Moreover, the distribution depends on nuisance

parameters λ, and ρZ , making inference difficult. If λ→∞ at a rate of
√
n, Ξ will approach

the usual normal distribution.
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In addition, the distribution of the coefficients on the exogenous variables xt is conta-

minated by the poor identification of δ. Specifically, we expect that the usual standard

errors will understate the true uncertainty as these are based on the first term of the limiting

distribution only. This will lead to over-rejection of hypotheses of the type H0 : γ = γ0.

The basic distribution theory described above is very closely related to that derived by

Staiger and Stock. The form of the covariance matrix is different because we do not assume

that the instruments, Zt, are independent of the error terms ut and vt; we only assume

that they are uncorrelated. This adjustment allows for higher-order dependence between Zt

on the one hand and ut and vt on the other. In cases where there is no higher dependence

between the instruments and the error terms, this distribution coincides with the one derived

by Staiger and Stock.

The assumptions on the properties of the data are given in terms of high-level conditions, a

joint weak law of large numbers and a weak convergence result. This is done to make the con-

ditions similar to those used by Staiger and Stock. Many sets of primitive conditions can lead

to these two results. For example, sufficient conditions are that the vector (ut, Vt) be a mar-

tingale difference sequence with respect to the filtration
©
(ut−j−1, Vt−j−1, Zt−j ,Xt−j) , j̇ ≥ 0

ª
with uniform finite (2 + η) moments for some η > 0 and the vector (Zt, Xt) be α-mixing

with mixing numbers of size −κ/ (κ− 1) and (r + κ) finite moments for some r ≥ 2. These

conditions imply that in the variance case, Zt = σ2t , we need σ8t to be finite for all t. This is

a difficult requirement for financial data as there is some evidence that many financial series

do not even have four finite moments. For this reason, we will use highly aggregated data
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(for example monthly and quarterly data) for applications. However, our simulation results

will show that reliable inference can still be done even under moment condition failure.

Use of the asymptotic theory developed above is hampered by the presence of the nuisance

parameters, λ and ρ, which cannot be consistently estimated. Suppose we want to test the

null hypothesis H0 : Rδ = r using the usual Wald statistic:

W =
³
Rbδ − r´0 ·R³ bZ 0MX

bY ´−1 var ³ bZ 0MXbu´³ bZ 0MX
bY ´−1R0¸−1 ³Rbδ − r´ .

The following proposition gives the asymptotic theory of Wald statistics in the above

model:

Proposition 4.2. Under the null hypothesis H0 : Rδ = r,

W
d→ Ξ0R0

h
Rσ

− 1
2

ZV (λ+ zv)
−1 σ∗Zu (λ+ zv)

−1 σ
− 1
2

ZVR
0
i−1

RΞ

where

σ∗Zu = σZu − σ∗uv − σ∗0uv + σ∗ZV

σ∗uv = lim
n→∞

1

n

X
s

X
t

Z⊥t u
0
tΞ
0VsZ⊥

0
s

σ∗ZV = lim
n→∞

1

n

X
s

X
t

Z⊥t V
0
t ΞΞ

0VsZ⊥
0

s .

As Wang and Zivot (1998) have noticed, in the case of just-identified models as is the

case here, if we use the restricted estimate of σZu, test statistics will have a limiting χ2

distribution. In over-identified models, these test statistics will be bounded from above by

a χ2 (K) distribution where K > k2 is the number of instruments. Thus LM statistics
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will be appropriate if our concern is to control test size and construct asymptotically valid

confidence intervals. These LM confidence intervals can be obtained as the set of δ such

that the LM test statistic does not reject the null hypothesis which involves, in the case with

no higher-order dependence, solving a quadratic equation as shown by Zivot, Startz, and

Nelson (1998). The resulting confidence intervals could thus be a bounded set, the union

of two unbounded intervals, or the entire real line. The possibility that confidence intervals

be unbounded reflects the great uncertainty about the parameter of interest. Dufour (1997)

has shown that a valid (1− α) confidence interval for a locally unidentified parameter will

be unbounded with probability (1− α) . Since Wald intervals are always bounded (being

constructed by adding and subtracting two standard errors to the point estimate), they

cannot have infinite volume and hence cannot provide valid inference in this type of model

in the sense that they must have zero coverage asymptotically. Unfortunately, these Wald

intervals are almost always used in practice.

In our case here, we need to adjust the LM statistic for the higher order dependence.

This is done in the following proposition for our just-identified case:

Proposition 4.3. Let g = n−1 bZ 0MX

³
y − bY δ´ . Then under the null hypothesis, H0 : δ =

δ0, LM = ng0bσ−1Zu,0g d→ χ2 (k2) where bσZu,0 = n−1
P

s

P
t Z

⊥
s u

0
t,0us,0Z

⊥0
t is an estimator of

σZu computed under the null hypothesis.

Unfortunately, in this case, there is no easy way to write the inequality that defines the

confidence intervals as a quadratic equation in δ. Confidence intervals must be computed

numerically by defining a grid of δ and verifying for each point on the grid whether the LM
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statistic defined in the above proposition is less than the appropriate critical value from the

χ2 (k2) distribution. This method is easily implemented in the scalar case, but could hardly

be carried out in high dimensions.

Another approach to obtaining confidence intervals, suggested by Staiger and Stock

(1997), is to use the Anderson-Rubin (1949) statistic. It is usually defined as the F -statistic

for the significance of δ∗ in the regression

y − bY δ0 = Xγ∗ + bZδ∗ + u∗
where γ∗ = γ+Γ (δ − δ0) , δ

∗ = Π (δ − δ0) , and u∗ = u+v (δ − δ0) . Since we have a case with

heteroskedasticity, we need to use robust standard errors to compute the test statistic. It

turns out that in the just-identified case, this statistic is identical to the above LM statistic.

This fact is stated in the following proposition:

Proposition 4.4. LetAR = nbδ∗bV −1 bδ∗ where bV = ³ 1
n
bZMX

bZ´−1 bσZu,0 ³ 1n bZMX
bZ´−1 .Then,

under the null hypothesis H0 : δ = δ0, AR = LM.

The above propositions thus give us two equivalent ways to construct asymptotically

valid confidence intervals for the entire vector δ. The two methods are exactly the same as

long as the same estimate of σZu is used to construct either LM or AR. The performance

of these intervals in a small sample situation will be analyzed in the simulation experiment

in the next section. In the case where a confidence interval on a linear combination of a

subvector of δ is desired, one can proceed by the projection method discussed in Dufour

and Jasiak (2001) and further analyzed in Dufour and Taamouti (2000) . Such an approach

would be valid but conservative.

20



In a related paper, Dufour and Jasiak (2001) have obtained exact tests based on AR-type

statistics in models with generated regressors and weak instruments. However, their results

only apply to parametrically-estimated regressors that will converge at rate
√
n and not to

the non-parametric estimators analyzed here.

Startz, Nelson, and Zivot (2001) have developed an alternative set of statistics, which

they call S statistics, that take into account the degree of identification. They show in the

case of a single regressor and instrument (k1 = k2 = 1) that these are equivalent to the AR

statistic. We suspect that this correspondence is more general and carries over to the exactly

identified case that we treat here, but we have no proof for this conjecture.

5. Simulation Results

In this section, the behavior of the procedures described above will be analyzed through a

small simulation experiment. Important issues to be analyzed include the choice of smoothing

parameters, the appropriateness of the various confidence intervals, and the distribution of

the resulting estimators.

Consider the GARCH-M(1, 1) DGP:

yt = γ + δσ2t + et = γ + δσ2t + σtεt

σ2t = ω + αe2t−1 + βσ2t−1

εt ∼ i.i.d. (0, 1)

In terms of the above notation, we have vt = e2t − σ2t , ut = et − δvt, Yt = e
2
t , and Zt = σ2t .
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The distribution of εt is either normal or Student t. This allows us to check the robustness

of the procedures to the restrictive moment assumptions required by the asymptotic theory

developed above. We use six sets of parameters, all estimated from data, which are presented

in table 2.

**** Insert table 2 here ****

The point estimates for the stock data are similar to those usually obtained in this

context, for example by Glosten, Jagannathan, and Runkle (1993), and will lead to a rather

persistent σ2t and to a weak instrument. Sample sizes of 450, 300, and 150 are used for

the experiments, with the first 50 observations deleted to remove the effect of the initial

condition (taken as the mean of the unconditional distribution). The length of the samples

nearly match those of the S&P, exchange rate, and excess holding yield data.

One disadvantage of the current setup is that the correlation between bσ2t and be2t cannot
be controlled. We can control the correlation between the unobservable variables, but due

to estimation, the correlation between observable variables will be different in general.

The values of the nuisance parameters in this setup can be obtained in terms of the
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moments of the conditional variance process as:

σZV = (κ4 − 1)
h
E
¡
σ8t
¢− 2E ¡σ2t ¢E ¡σ6t ¢+ E ¡σ2t¢2E ¡σ4t¢i

σZu = δ2σZv + E
¡
σ6t
¢− 2E ¡σ2t¢E ¡σ4t¢+ E ¡σ2t ¢3

−2δκ3
h
E
¡
σ7t
¢− 2E ¡σ5t ¢E ¡σ2t ¢+ E ¡σ3t¢E ¡σ2t¢2i

ρZ =
−δσZv + κ3

h
E (σ7t )− 2E (σ5t )E (σ2t ) + E (σ3t )E (σ2t )2

i
σ
1
2
Zuσ

1
2
ZV

λ =

√
n
h
E (σ4t )− E (σ2t )2

i
σ
1
2
Zv

σ∗Zu = σZu − 2σuvΞ+ σZV Ξ
2

where κj = E
¡
εjt
¢
is the jth moment of εt. The values of the first 4 even moments of σ2t are

derived recursively in Bollerslev (1986) as a function of ω, α, and β and the moments of εt.

This allows for the easy computation of the nuisance parameters which are included in table

2. Note that the moment condition assumed in theorem 4.1 is only satisfied for the first two

sets of parameters.

Figure 3 shows a plot of the asymptotic distribution of the usual t statistic (from propo-

sition 4.2) using the above estimates of the nuisance parameters and the standard normal

distribution obtained under the usual asymptotic theory for the first two sets of parame-

ters. The figure is drawn with 500,000 draws taken from each distribution. For the other

experiments since the higher-order moments necessary to obtain the limit distribution do

not exist, we cannot use the weak instrument limiting distribution to describe the behavior

of the estimator.

The top panel in figure 3 represents the distribution for the S&P 500 data. For those
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values of the parameters, the t statistic has a highly skewed distribution. On the other hand,

the bottom panel reveals that for the second experiment, the t statistic is both highly skewed

and has fat tails. In fact, a good part of the probability mass (about 7 %) lies outside of

the [−4, 4] interval. The shape of the distribution is controlled by 2 nuisance parameters, λ

and ρZ . These experiments show that low λ and high |ρZ | give distributions very far from

normality. To measure the impact of these properties on coverage probabilities, note that

only 77.7% of the mass is between -1.96 and 1.96 in the bottom panel, while the same figure is

96.5% in the top panel. We conclude that the first experiment will have usual (Wald-based)

95% confidence intervals with coverage rates higher than their nominal level, while those in

the second experiment will exhibit low coverage.

**** Insert figure 3 here ****

To demonstrate convergence to normality, figure 4 shows the same picture for n = 50, 000

for both experiments. Since the weak instrument approximation approaches the standard

normal as n → ∞ in this case because λ → ∞ at rate
√
n, we see that both skewness and

excess kurtosis are much reduced. In this case, 95.2% and 95.1% of the mass lies between

-1.96 and 1.96 respectively. Because of the parameter values, the distribution for the second

experiment requires a much larger sample size than the first one in order to have a reasonably

normal distribution and accurate 95% Wald-based confidence intervals.

**** Insert figure 4 here ****
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The simulation results are presented in figures 5 and 6 and tables 3 and 4. Figure

5 provides a plot of the density of the weak IV approximation and of the infeasible IV

estimator that uses the actual values of σ2t and e
2
t generated; this estimator is infeasible since

these values are unobservable in practice. Figure 6 provides the sane information for the

two nonparametric estimators. In tables 3 and 4, the first column shows the median of the

IV estimator (rather than the mean because of the heavy tails of the distributions). The

next two columns indicate the coverage rate of the appropriate 95% confidence intervals.

The fifth column contains the mean R2 of a regression of be2t on a constant and bσ2t . The
next two columns provide the Kolmogorov-Smirnov (KS) statistic as a measure of fit of the

small-sample distribution to the two alternative asymptotic approximations (if applicable).

Finally, the last two columns compare the fits of the nonparametric estimates of both the

regressor and instrument by reporting the R2 from a regression of the true values on a

constant and the nonparametric estimates. The first line of each panel reports results of the

infeasible estimator discussed above.

We first discuss the results for the infeasible estimator. All experiments with the infeasible

estimator were repeated 10,000 times. The asymptotic approximation captures the finite-

sample distribution of the t statistic well. It matches the skewness and kurtosis well and

thus provides a much better description than the normal approximation.

**** Insert figure 5 here ****

In all six experiments, the infeasible IV estimator is biased upward. The Wald confidence
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intervals have a coverage rate that is higher than its nominal level for the S&P data and

lower (and sometimes much lower) for the other two data sets, while the LM interval has

coverage rate that is only slightly too low in all cases. Not surprisingly, the weak instrument

approximation is more accurate according to the KS statistic in both cases where it can

be computed. The improvement is much more dramatic in the very non-normal case of

experiment 2. Note also that the overall results are not sensitive to conditional normality or

the existence of moments.

**** Insert tables 3 and 4 here ****

We now turn our attention to the semi-parametric estimators. Estimates of e2t and σ2t are

obtained using the same two nonparametric methods as above, either a kernel or the semi-

parametric Engle-Ng estimator using data-based selection for all smoothing parameters.

Each experiment with the non-parametric estimators was repeated 5000 times.

The need to estimate σ2t and e
2
t changes the result quite dramatically relative to the

infeasible estimator. The results using the kernel estimates are presented in the second row

of each panel of tables 3 and 4 and as the dashed line in figure 6, while those for the Engle-Ng

are presented in the third row of each panel and as the dotted line in figure 6. Overall, the

Engle-Ng procedure leads to an IV estimator that much more closely matches the infeasible

one. In particular, its distribution has a similar shape to that of the infeasible IV (and

that of the weak IV approximation), and the coverage rate of the confidence intervals based

on it are much closer to those of the infeasible estimator. The reason for this is clear: it
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provides a better approximation to the instrument (σ2t ) than does the kernel as evidence by

the higher R2 in the regression of true conditional variance on a constant and its estimate

which is consistent with the simulation evidence in Perron (1999) .The regressor (e2t ) is well

approximated by any method. Note also that once we estimate the regressor and instrument,

the IV estimator of δ is strongly biased towards zero (with the exception of experiment 3).

**** Insert figure 6 here ****

An important practical result is that LM-based confidence intervals are more robust

(in terms of having correct coverage) to both the presence of weak instruments and to

the estimation of regressors and instruments. In all cases, the coverage rate of LM-based

confidence intervals is closer to 95% than Wald—based intervals. If, in addition, the Engle-Ng

estimator is used, coverage is almost exact. These should therefore be preferred in empirical

work.

Table 5 provides details on the nonparametric estimators used in the simulation. We

report the mean bandwidth constant, lag length selected, sum of the first 10 squared auto-

correlation coefficients of the variance residuals, as well as the median constant and slope

coefficient from the regression of the true instrument and regressor on a constant and the

non-parametric estimates. The R2 from these regressions has already been reported in tables

3 and 4.

**** Insert table 5 here ****
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The BIC-type criterion seems to overpenalize the number of lags as it always chooses a

single lag for all kernel estimates. However, it does suggest that some oversmoothing relative

to the i.i.d. normal case is typically warranted (since in that case, the optimal bandwidth

constant is 1.06). This is not surprising and is usually the case for dependent data. The

criterion also seems to penalize heavily the number of bins in the Engle-Ng estimator as the

mean number of bins is not much above 2. However, it frequently chooses more than one

lag.

The main feature of table 5 however is the tight relation between the bias of the in-

strument estimates and the behavior of the resulting IV estimator relative to the infeasible

estimator. In cases where the IV estimator with estimated regressor and instrument per-

forms poorly (experiments 2, 5, and 6 for both estimators and experiment 4 for the kernel

only), the median slope parameter from the instrument regression is always less than 0.5,

suggesting a severe bias of the nonparametric estimator. This result is akin to the typical

result in semiparametric estimation that it is preferable to undersmooth the nonparamet-

ric component so as to reduce bias. The averaging in the second step mitigates the higher

variance that this undersmoothing typically entails, while it does not eliminate bias.

6. Empirical results

In this section, we analyze our three financial data sets to seek evidence of a risk-return trade-

off. To reiterate, the series are monthly returns on the S&P 500 index, monthly returns on

the yen-dollar spot rate, and quarterly excess holding yield between 6-month and 3-month
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Treasury bills. For each series, we postulate a model of the form

yt = γ + δσ2t + et

with σ2t = E
£{yt − E [yt|Ft−1]}2 |Ft−1¤ where Ft−1 are lagged values of yt. For all three

series, the conditional variance was estimated using either the kernel or Engle-Ng estimator

described above with the data-based selection of the tuning parameters. For comparison,

we also report the results from a GARCH-M(1, 1) model estimated using Gaussian quasi-

maximum likelihood.

The convergence to normality shown in the simulation might suggest that the use of higher

frequency data is greatly desirable as it would increase sample size, but higher frequency

would also lead to a more persistent conditional variance and hence a weaker instrument.

The impact of this choice on the behavior of the IV estimator and its related statistics is

therefore ambiguous. As discussed already, another potential use of high-frequency data (not

pursued here) is to get better estimates of low-frequency volatility.

The estimation results are presented in table 6. In addition to the point estimates and

their robust (White) standard errors, we present Wald-based and LM-based 95% confidence

intervals for the coefficient on the risk variable, δ, the R2 in a regression of bσ2t on be2t and
a constant, and the values of the tuning parameters used to construct the nonparametric

estimates. The LM confidence intervals were computed by numerically inverting the LM

statistic using a grid of 20,000 equi-spaced points between -1000 and 1000. For this reason,

the infinite or very large confidence intervals are truncated at these two endpoints.

The trade-off between risk and return has been extensively studied for stocks with con-
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flicting results. For example, French, Schwert, and Stambaugh (1987) find a positive rela-

tion between returns and the conditional variance, while Glosten, Jagannathan, and Runkle

(1993) find a negative relationship using a modified GARCH-M methodology. This conflict-

ing evidence is not surprising in light of the results obtained by Backus, Gregory, and Zin

(1989) and Backus and Gregory (1993). Using a general equilibrium setting, they provide

simulation evidence that the relationship between expected returns and the variance of re-

turns can go in either direction, depending on specification. Further doubt on the validity

of the linearity assumption is provided in Linton and Perron (2000) using non-parametric

methods.

Our results suggest that no significant risk premium exists in stock returns using any of

the three methods. However, the main feature of the results is the wider confidence intervals

obtained using the LM principle. Wald confidence intervals understate the uncertainty of

the estimated parameters; the differences are not dramatic however. The results are also

similar to those obtained from the GARCH-M(1,1) model.

**** Insert table 6 here ****

The results for the yen-dollar returns are presented next with all point estimates negative.

In the case of the kernel estimator, this finding is actually significantly different from 0. The

relationship for this series appears to be the least identified as all estimators have large

standard errors (and the first-stage R2 is very low). Both the Wald and LM confidence

intervals are quite wide, reflecting poor identification of the model. The LM interval with

30



the Engle-Ng estimator is even unbounded in this case.

Finally, the results of the estimation for excess holding yields present a similar picture.

All point estimates are positive, with the GARCH-M result being significantly different from

0. This conclusion is the same as Engle, Lillien, and Robbins (who used a restricted ARCH-

M(4) structure). For the kernel estimator, the effect is almost significant at the 5% level.

Once again, the LM intervals are much wider than their Wald counterparts.

Figure 7 presents a time plot of the estimated conditional variance for all three series.

Except for the excess holding yield, the Engle-Ng and GARCH-M models offer a very similar

picture. On the other hand, the kernel estimates are much more volatile (not surprisingly

given than they do not have an autoregressive structure) over time. The results for the

excess holding yield might seem strange at first sight since the GARCH-M gives such a

different picture (especially around the Volker experiment of 1979-82). The reason lies in

the bandwidth choice for the estimation of the conditional mean of this series. The mean is

estimated with a very small bandwidth (constant is 0.28) thus implying little smoothing of

neighboring observations, and as a result, the residuals are much smaller than with GARCH-

M (and hence have smaller variance).

**** Insert figure 7 here ****
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7. Conclusion

This paper follows several others in showing that inference using instrumental variables is

greatly affected by a low correlation between the instruments and the explanatory variables.

It extends the current literature to linear semi-parametric models with non-parametrically es-

timated regressors and instruments and to cases with higher-order dependence. The analysis

shows that the limit theory is similar to that currently available in the literature.

Simulation evidence reveals that the additional step of estimating both the regressors

and the instruments may lead to a loss in the quality of asymptotic approximations. Using a

semi-parametric estimator proposed by Engle and Ng (1993) and carrying out inference using

Lagrange Multiplier procedures allows for inference that is more robust than the alternatives

considered here.

Empirical application to three financial series suggests that conclusions may hinge on

the use of appropriate confidence intervals. Using the appropriate LM confidence intervals

and the semi-parametric estimator of the conditional variance leads us to conclude that

none of the series considered includes a statistically significant risk premium. This differs in

some cases from inference based on the usual Wald confidence intervals and on a parametric

GARCH-M model. However, because of the wide confidence intervals, the results are also

consistent with the presence of large risk premia. The data is simply not informative enough

to precisely estimate the relationship between risk and returns.

Further work on this problem is clearly warranted. In particular, other more commonly

used estimators such as maximum likelihood are likely to face similar problems as the IV
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estimator analyzed here. This analysis could follow the methodology developed in Stock

and Wright (2000) for GMM estimators. Finally, a critical avenue for future research is

the development of techniques to diagnose cases where weak identification hinders inference

using usual methods. Recent testing procedures along these lines have been suggested by

Arellano, Hansen, and Sentana (1999) ,Wright (2000) , and Hahn and Hausman (2002) .

33



REFERENCES

Andersen, Torben G. and Tim Bollerslev, “Answering the Critics: Yes, ARCH Models

Do Provide Good Volatility Forecasts”, International Economic Review, 39, November

1998, 885-905.

Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys, “The Dis-

tribution of Realized Exchange Rate Volatility”, Journal of the American Statistical

Association, 96, March 2001, 42-55.

Anderson, T. W. and Herman Rubin, “Estimation of the Parameters of a Single Equation

in a Complete System of Stochastic Equations”, Annals of Mathematical Statistics, 20,

March 1949, 46-63.

Andrews, Donald W. K., “Asymptotics for Semiparametric Econometric Models via Sto-

chastic Equicontinuity”, Econometrica, 62, January 1994, 43-72.

Andrews, DonaldW. K., “Examples of MINPIN Estimators: Supplement to Asymptotics for

Semiparametric Models via Stochastic Equicontinuity”, manuscript, Yale University,

1992.

Andrews, Donald W. K., “Nonparametric Kernel Estimation for Semiparametric Models”,

Econometric Theory, 11, August 1995, 560-596.

Arellano, Manuel, Lars P. Hansen, and Enrique Sentana, “Underidentification?”, manu-

script, CEMFI, July 1999.

34



Backus, David K., Allan W. Gregory, and Stanley E. Zin, “Risk Premiums in the Term

Structure: Evidence from Artificial Economies”, Journal of Monetary Economics, 24,

November 1989, 371-399.

Backus, David K. and Allan W. Gregory , “Theoretical Relations Between Risk Premiums

and Conditional Variances,” Journal of Business and Economic Statistics, 11, April

1993, 177-185.

Bollerslev, Tim, “Generalized Conditional Heteroskedasticity”, Journal of Econometrics,

31, April 1986, 307-327.

Bottazzi, Laura and Valentina Corradi, “Analysing the Risk Premium in the Italian Stock

Market: ARCH-M Models versus Non-parametric Models”, Applied Economics, 23,

March 1991, 535-542.

Braun, Phillip A., Daniel B. Nelson, and Alain M. Sunier, “Good News, Bad News, Volatil-

ity and Betas”, Journal of Finance, 50, december 1995, 1575-1604.

Chao, John. and Norman. R. Swanson, “Bias and MSE of the IV Estimator Under Weak

Identification”, manuscript, University of Maryland and Purdue University, August

2001.

Choi, In and Peter C. B. Phillips, “Asymptotic and Finite Sample Distribution Theory for

the IV Estimators and Tests in Partially Identified Structural Relations”, Journal of

Econometrics, 51, February 1992, 113-150.

35



Dufour, Jean-Marie, “Some Impossibility Theorems in Econometrics with Applications to

Instrumental Variables, Dynamic Models, and Cointegration”, Econometrica, 65, No-

vember 1997, 1365-1387.

Dufour, Jean-Marie and Joann Jasiak, “Finite Sample Inference Methods for Simultane-

ous Equations and Models with Unobserved and Generated Regressors”, International

Economic Review, 42, August 2001, 815-843.

Dufour, Jean-Marie and Mohamed Taamouti, “Projection-Based Statistical Inference in

Linear Structural Models with Possibly Weak Instru-ments”, manuscript, Université

de Montréal, 2001.

Engle, Robert F., and Victor K. Ng, “Measuring and Testing the Impact of News on

Volatility”, Journal of Finance, 48, December 1993, 1749-1778.

Engle, Robert F., Lilien, David M., and Russell P. Robins, “Estimating Time Varying Risk

Premia in the Term Structure: The ARCH-M Model”, Econometrica, 55, March 1987,

391-407.

French, Kenneth, G. William Schwert, and Robert F. Stambaugh, “Expected Stock Returns

and Volatility”, Journal of Financial Economics, 19, September 1987, 3-29.

Glosten, Lawrence R., Ravi Jagannathan, and David E. Runkle, “On the Relation Between

the Expected Value and the Volatility of the Nominal Excess Return on Stocks”, Jour-

nal of Finance, 48, December 1993, 1779-1801.

36



Hahn, Jinyong and Jerry Hausman, “A New Specification Test for the Validity of Instru-

mental Variables”, Econometrica, 70, January 2002, 163-189.

Hall, Alastair R., Glenn D. Rudebusch, and David W. Wilcox, “Judging Instrument Rele-

vance in Instrumental Variables Estimation”, International Economic Review, 37, May

1996, 283-298.

Lettau, Martin and Sydney Ludvigson, “Measuring and Modeling Variation in the Risk-

Return Tradeoff”, manuscript, New York University and Federal Reserve Bank of New

York, October 2001.

Linton, Oliver and Benoit Perron, “The Shape of the Risk Premium: Evidence From a

Semiparametric GARCH Model”, CRDE working paper 0899, Université de Montréal,

1999 (revised February 2002).

Masry, Elias and Dag Tjostheim, “Nonparametric Estimation and Identification of Non-

linear Time Series: Strong Convergence and Asymptotic Normality”, Econometric

Theory, 11, June 1995, 258-289.

Nelson, Charles R., Startz, Richard, “The Distribution of the Instrumental Variables Es-

timator and its t-ratio when the Instrument is a Poor One”, Journal of Business, 63,

January 1990, S125-S140.

Pagan, Adrian, “Econometric Issues in the Analysis of Regressions with Generated Regres-

sors”, International Economic Review, 25, February 1984, 221-247.

37



Pagan, Adrian R. and Y. S. Hong, “Nonparametric Estimation and the Risk Premium”

in Barnett, William A., James Powell, and George E. Tauchen eds., Nonparametric

and Semiparametric Methods in Econometrics and Statistics: Proceedings of the Fifth

International Symposium in Economic Theory and Econometrics, Cambridge: Cam-

bridge University Press, 1991, 51-75.

Pagan, Adrian and Aman Ullah. “The Econometric Analysis of Models with Risk Terms”,

Journal of Applied Econometrics, 3, April 1988, 87-105.

Perron, Benoit, “A Monte Carlo Comparison of Non-parametric Estimators of the Condi-

tional Variance”, manuscript, Université de Montréal, 1999.

Phillips, Peter C. B., “Partially Identified Econometric Models”, Econometric Theory, 5,

August 1989, 181-240.

Sentana, Enrique and Sushil Wadhwani, “Semi-parametric Estimation and the Predictabil-

ity of Stock Market Returns: Some Lessons from Japan”, Review of Economics Studies,

58, May 1991, 547-563.

Staiger, Douglas and James H. Stock, “Instrumental Variables Regression with Weak In-

struments”, Econometrica, 65, May 1997, 557-586.

Startz, Richard, Charles R. Nelson, and Eric Zivot, “Improved Inference for the Instrumen-

tal Variable Estimator”, manuscript, Univesity of Washington, February 2001.

Stock, James and Jonathan Wright, “GMM with Weak Identification”, Econometrica, 68,

38



September 2000, 1055-1096.

Tjostheim, Dag and Bjorn H. Auestad, “Nonparametric Identification of Nonlinear Time

Series: Selecting Significant Lags”, Journal of the American Statistical Association, 89,

december 1994, 1410-1419.

Wang, Jiahui and Eric Zivot, “Inference on a Structural Parameter in Instrumental Regres-

sion with Weak Instruments”, Econometrica, 66, November 1998, 1389-1404.

Wright, Jonathan, “Detecting Lack of Identification in GMM”, International Finance Dis-

cussion Paper 674, Board of Governors of the Federal Reserve System, July 2000.

Zivot, Eric, Richard Startz and Charles R. Nelson “Valid Confidence Intervals and Inference

in the Presence of Weak Instruments”, International Economic Review, 39, November

1998, 1119-1144.

39



8. Appendix

A. Proofs

A.1. Preliminary results

Before proving the results in the paper, we will collect the required preliminaries in the

following lemma.

Lemma A.1. Suppose the conditions of theorem (4.1) are satisfied. Then, the following

hold:

1. 1√
n

³ bZ 0MX
bY ´ = 1√

n
(Z 0MXY ) + op (1)

2. 1√
n

h bZ 0MX (Z − Y ) δ
i
= 1√

n
[Z 0MX (Z − Y ) δ] + op (1)

3. 1√
n

³ bZ 0MXe
´
= 1√

n
(Z 0MXe) + op (1)

4. 1
n

³ bZ 0MX
bZ´ = 1

n
(Z 0MXZ) + op (1)

5. 1√
n
X 0bY = 1√

n
X 0Y + op (1)

6. 1√
n

h bZ 0MX

³
Y − bY ´ δi p→ 0

7. 1√
n

³ bZ 0MXu
´
= ΨZu + op (1) .
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Proof. To prove the first result, note that

1√
n
bZ 0MX

bY =
1√
n

³ bZ − Z´0MX

³bY − Y ´+ 1√
n

³ bZ − Z´0MXY

+
1√
n
Z 0MX

³bY − Y ´+ 1√
n
Z 0MXY

=
1√
n

³ bZ − Z´0MX

³bY − Y ´+ 1√
n

³ bZ − Z´0MXY

+
1√
n
Z 0MX

³bY − Y ´+ 1√
n
Z 0MXY

=
1√
n
Z 0MXY +

1√
n

³ bZ − Z´0MX

³bY − Y ´+ 1√
n

³ bZ − Z´0MX (Y − Z)

+
1√
n

³ bZ − Z´0MX [Z − E (Z)] + 1√
n

³ bZ − Z´0MXE (Z)

=
1√
n
Z 0MXY + A1 + A2 + A3 + A4

We will next bound each of the Ai, i = 1, . . . , 4. Let |A| be the matrix norm of A. First,

|A1| =
¯̄̄̄
1√
n

³ bZ − Z´0MX

³bY − Y ´¯̄̄̄
≤

¯̄̄ bZ − Z ¯̄̄ ¯̄̄̄ 1√
n
MX

³bY − Y ´¯̄̄̄
= op (1)

by assumptions 1 and 2. Next,

|A2| =
¯̄̄̄
1√
n

³ bZ − Z´0MX (Y − Z)
¯̄̄̄

≤
¯̄̄ bZ − Z ¯̄̄ ¯̄̄̄ 1√

n
MX (Y − Z)

¯̄̄̄
= op (1)
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by assumption 2 and since the quantity inside the second norm will be Op (1). The third

term is:

|A3| =
¯̄̄̄
1√
n

³ bZ − Z´0MX [Z −E (Z)]
¯̄̄̄

≤
¯̄̄ bZ − Z ¯̄̄ ¯̄̄̄ 1√

n
MX [Z − E (Z)]

¯̄̄̄
= op (1)

again by assumption 2 and since the term inside the second norm is Op (1). Finally, the

fourth term can be bounded as:

|A4| =
¯̄̄̄
1√
n

³ bZ − Z´0MXE (Z)

¯̄̄̄
≤

¯̄̄̄
1√
n

³ bZ − Z´0MX

¯̄̄̄
|E (Z)|

= op (1)

as bZ p→ Z and |E (Z)| <∞ with probability one since Zt <∞ for all t. Thus,

1√
n
bZ 0MX

bY = 1√
n
Z 0MXY + op (1)

as required.

The second result is obtained as:

1√
n

h bZ 0MX (Z − Y ) δ
i
=

1√
n

·³ bZ − Z´0MX (Z − Y ) δ
¸
+

1√
n
[Z 0MX (Z − Y ) δ]

=
1√
n
[Z 0MX (Z − Y ) δ] + op (1)
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where the last line follows from:

¯̄̄̄
1√
n

³ bZ − Z´0MX (Z − Y ) δ
¯̄̄̄
≤

¯̄̄ bZ − Z ¯̄̄ ¯̄̄̄ 1√
n
MX (Z − Y ) δ

¯̄̄̄
= op (1) ·Op (1)

= op (1)

The third result follows from:

1√
n
bZ 0MXe =

1√
n

h³ bZ − Z´i0MXe+
1√
n
Z 0MXe

and noting that the first term can be bounded by:

¯̄̄̄
1√
n

h³ bZ − Z´i0MXe

¯̄̄̄
≤

¯̄̄ bZ − Z ¯̄̄ ¯̄̄̄ 1√
n
MXe

¯̄̄̄
= op (1) ·Op (1)

= op (1)

by assumptions 2 and 4.

The fourth result is proven by rewriting the left hand side as:

1

n
bZ 0MX

bZ =
1

n

³ bZ − Z´0MX
bZ + 1

n
Z 0MX

bZ
=

1

n
Z 0MXZ +

1

n

³ bZ − Z´0MX

³ bZ − Z´+ 1
n

³ bZ − Z´0MXZ +
1

n
Z 0MX

³ bZ − Z´
=

1

n
Z 0MXZ +B1 +B2 +B

0
2
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where Bj, j = 1, 2, is bounded in turn by an op (1) term. For B1, we do so as:

|B1| =
¯̄̄̄
1

n

³ bZ − Z´0MX

³ bZ − Z´¯̄̄̄
≤

¯̄̄̄
1√
n

³ bZ − Z´0 ι¯̄̄̄ |MX |
¯̄̄̄
1√
n
ι0
³ bZ − Z´¯̄̄̄

= op (1)

by assumption 2 where ι is a vector of ones. The second term is bounded as:

|B2| =
¯̄̄̄
1

n

³ bZ − Z´0MXZ

¯̄̄̄
≤

¯̄̄ bZ − Z ¯̄̄ ¯̄̄̄ 1
n
MXZ

¯̄̄̄
= op (1) ·Op (1)

= op (1)

by assumption 2. The fourth result follows.

The fifth result is obtained as:

1√
n
X 0bY =

1√
n
X 0Y +

1√
n
X 0
³bY − Y ´

=
1√
n
X 0Y + op (1)

by assumption 1.
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The sixth result is obtained from the decomposition:

¯̄̄̄
1√
n

h bZ 0MX

³
Y − bY ´ δi¯̄̄̄ =

¯̄̄̄
1√
n

·³ bZ − Z´0MX

³
Y − bY ´ δ¸+ 1√

n

h
Z 0MX

³
Y − bY ´ δi¯̄̄̄

≤
¯̄̄̄
1√
n

·³ bZ − Z´0 ³Y − bY ´ δ¸¯̄̄̄
+

¯̄̄̄
1√
n
[Z − E (Z)]0MX

h³
Y − bY ´i δ ¯̄̄̄+ ¯̄̄̄ 1√

n
E (Z)0MX

³
Y − bY ´ δ ¯̄̄̄

≤
¯̄̄ bZ − Z ¯̄̄ ¯̄̄̄ 1√

n
ι0
³
Y − bY ´ δ ¯̄̄̄

+ |Z − E (Z)|
¯̄̄̄
1√
n
ι0
³
Y − bY ´ δ ¯̄̄̄+ |E (Z)| ¯̄̄̄ 1√

n
ι0
³
Y − bY ´ δ ¯̄̄̄

= op (1)

where the last line follows from assumption 1 and E (Z) <∞.

Finally, the last result is obtained by rewriting the left hand side as:

1√
n
bZ 0MXu =

1√
n
bZ 0MXe+

1√
n
bZ 0MX

³
Y − bY ´ δ + 1√

n
bZ 0MX (Z − Y ) δ

and using results 2, 3, and 6 of the lemma.

A.2. Proof of theorem 4.1

The instrumental variable estimator of δ is

bδ − δ =
³ bZ 0MX

bY ´−1 bZ 0MXu
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To derive the asymptotic distribution, we use the first result of the lemma to obtain:

1√
n
bZ 0MX

bY =
1√
n
Z 0MXY + op (1)

=
1√
n
[Z 0MX (ZΠ+ V )]

=
1

n
Z 0MXZG+

1√
n
Z 0MXV

d→
X

ZZ
G+ΨZV

= σ
1
2
ZV

³
σ
− 1
2

ZV

X
zz
G+ zv

´
= σ

1
2
ZV (λ+ zv)

while 1√
n
(Z 0MXu)

d→ ΨZu = σ
1/2
Zu zu by assumption. Putting these pieces together gives us

the desired result for the distribution of bδ, bδ − δ
d→ Ξ.

To derive the distribution of bγ, note that:
bγ = (X 0X)−1X 0

³
y − bY bδ´

= γ + (X 0X)−1X 0bY ³δ − bδ´+ (X 0X)−1X 0u

so that

√
n (bγ − γ) =

µ
X 0X
n

¶−1Ã
X 0bY√
n

!³
δ − bδ´+ µX 0X

n

¶−1
X 0u√
n

=

µ
X 0X
n

¶−1µ
X 0Y√
n

¶³
δ − bδ´+ µX 0X

n

¶−1
X 0u√
n
+ op (1)

d→ −
X−1

XX

³X
XZ
G+

X
XX
H +ΨXV

´
Ξ+

X−1
XX

ψXu
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where the term in parentheses is derived from:

1√
n
X 0Y =

1√
n
X 0 (ZΠ+XΓ+ V )

=
1

n
X 0ZG+

1

n
X 0XH +

1√
n
X 0V

d→
X

XZ
G+

X
XX
H +ΨXV

by assumption.

A.3. Proof of Proposition 4.2

From the proof of theorem 4.1, n−
1
2 bZ 0MX

bY d→ σ
1
2
ZV (λ+ zv) . The only part that remains

to derive is the limiting behavior of lim
n→∞

var
³

1√
n
bZ 0MXbu´ . The residual orthogonal to X,

MXbu can be written as MX

³
y − bY bδ´ = MXu −MX

bY ³bδ − δ
´
and the term of interest is
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therefore:

lim
n→∞

var

µ
1√
n
bZ 0MXbu¶ = lim

n→∞
var

µ
1√
n
bZ 0M 0

X

h
MXu−MX

bY ³bδ − δ
´i¶

= lim
n→∞

var

µ
1√
n

h bZ 0M 0
Xu− bZ 0M 0

X
bY ³bδ − δ

´i¶
= lim

n→∞
var

µ
1√
n

h
Z 0M 0

Xu− Z 0M 0
X (ZΠ + V )

³bδ − δ
´i
+ op (1)

¶
= lim

n→∞
var

µ
1√
n

Xh
Z⊥t u

0
t − Z⊥t Z⊥0t Π

³bδ − δ
´
− Z⊥t V 0t

³bδ − δ
´i
+ op (1)

¶
= lim

n→∞
1

n

X
s

X
t
Z⊥t u

0
tusZ

⊥
s

+ lim
n→∞

1

n

X
s

X
t
Z⊥t Z

⊥0
t Π

³bδ − δ
´³bδ − δ

´0
Π0Z⊥s Z

⊥0
s

+ lim
n→∞

1

n

X
s

X
t
Z⊥t V

0
t

³bδ − δ
´³bδ − δ

´0
VsZ

⊥0
s

− lim
n→∞

1

n

X
s

X
t
Z⊥t u

0
t

³bδ − δ
´0
Π0Z⊥s Z

⊥0
s

−
µ
lim
n→∞

1

n

X
s

X
t
Z⊥t u

0
t

³bδ − δ
´0
Π0Z⊥s Z

⊥0
s

¶0
− lim
n→∞

1

n

X
s

X
t
Z⊥t u

0
t

³bδ − δ
´0
VsZ

⊥0
s

−
µ
lim
n→∞

1

n

X
s

X
t
Z⊥t u

0
t

³bδ − δ
´0
VsZ

⊥0
s

¶0
+ lim
n→∞

1

n

X
s

X
t
Z⊥t Z

⊥0
t Π

³bδ − δ
´³bδ − δ

´0
VsZ

⊥0
s

+

µ
lim
n→∞

1

n

X
s

X
t
Z⊥t Z

⊥0
t Π

³bδ − δ
´³bδ − δ

´0
VsZ

⊥0
s

¶0
= σZu + C1 + C2 − C3 − C 03 − C4 − C 04 + C5 + C 05

The second term is

C1 = + lim
n→∞

1

n

X
s

X
t
Z⊥t Z

⊥0
t Π

³bδ − δ
´³bδ − δ

´0
Π0Z⊥s Z

⊥0
s

= lim
n→∞

1

n2

X
s

X
t
Z⊥t Z

⊥0
t GΞΞ

0G0Z⊥s Z
⊥0
s

= op (1)
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while the third one is:

C2 = lim
n→∞

1

n

X
s

X
t
Z⊥t V

0
t

³bδ − δ
´³bδ − δ

´0
VsZ

⊥0
s

= lim
n→∞

1

n

X
s

X
t
Z⊥t V

0
tΞΞ

0VsZ⊥0s

= σ∗ZV .

The next term is:

C3 = lim
n→∞

1

n

X
s

X
t
Z⊥t u

0
t

³bδ − δ
´0
Π0Z⊥s Z

⊥0
s

= lim
n→∞

1

n
3
2

X
s

X
t
Z⊥t u

0
tΞ
0G0Z⊥s Z

⊥0
s

= op (1)

while the fifth term in the sum is:

C4 = lim
n→∞

1

n

X
s

X
t
Z⊥t u

0
t

³bδ − δ
´0
VsZ

⊥0
s

= lim
n→∞

1

n

X
s

X
t
Z⊥t u

0
tΞ
0VsZ⊥0s

= σ∗uv

and finally

C5 = lim
n→∞

1

n

X
s

X
t
Z⊥t Z

⊥0
t Π

³bδ − δ
´³bδ − δ

´0
VsZ

⊥0
s

= lim
n→∞

1

n
3
2

X
s

X
t
Z⊥t Z

⊥0
t GΞΞ

0VsZ⊥0s

= op (1)
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A.4. Proof of Proposition 4.3

By result 7 of the lemma,
√
ng

d→ ΨZu
d
= N (0,σZu) under the null hypothesis, while

bσZu,0 p→,σZu. Standard arguments show the desired result, ng0bσ−1Zu,0g d→ χ2 (k2) .

A.5. Proof of Proposition 4.4

The estimator of δ∗ is defined as:

bδ∗ =
³ bZ 0MX

bZ´−1 bZ 0MX

³
y − bY δ0´

=
³ bZ 0MX

bZ´−1 bZ 0MX

³
Xγ∗ + bZδ∗ + u+ v (δ − δ0)

´
= δ∗ +

³ bZ 0MX
bZ´−1 bZ 0MXu+

³ bZ 0MX
bZ´−1 bZ 0MXV (δ − δ0)

so that

√
n
³bδ∗ − δ∗

´
=

Ã bZ 0MX
bZ

n

!−1 bZ 0MXu√
n

+

Ã bZ 0MX
bZ

n

!−1 bZ 0MXV (δ − δ0)√
n

=

Ã bZ 0MX
bZ

n

!−1 bZ 0MXu√
n

under the null hypothesis. By results 4 and 7 of the lemma,
√
n
³bδ∗ − δ∗

´
→ N

¡
0,
P−1

ZZ σZu
P−1

ZZ

¢
.

Define Ω =
·³ bZ 0MX

bZ´−1 bσZu,0 ³ bZ 0MX
bZ´−1¸ . The robust AR statistic is:

AR = n
³
y − bY δ0´0MX

bZ ³ bZ 0MX
bZ´−1 Ω−1 ³ bZ 0MX

bZ´−1 bZ 0MX

³
y − bY δ´

= n
³
y − bY δ0´0MX

bZbσ−1Zu,0 bZ 0MX

³
y − bY δ´

= LM

after simplification.
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Table 1. R2 from regression of be2t on bσ2t and constant (%)
Period Kernel Engle-Ng

S&P 500 returns 1965:1-1997:12 5.26 2.02

Yen-dollar returns 1978:10-1998:12 5.07 0.38

Excess holding yield 1959:1-2000:2 16.35 21.56
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Table 2. Parameter values for simulation experiments

DGP: yt = γ + δσ2
t + σtεt

σ2
t = ω + αe2

t−1 + βσ2
t−1

εt ∼ i.i.d.N (0, 1) for experiments I-III

εt ∼ i.i.d.t (ν) for experiments IV-VI

Parameter I (S&P 500) II (yen-dollar) III (holding yields) IV (S&P 500 - t) V (yen-dollar - t) VI (holding yields - t)

γ -0.009 0.059 0.001 -0.012 0.109 0.0005

ω 1.44×10−4 8.42×10−4 1.70×10−7 2.03×10−4 8.91×10−4 2.03×10−7

α 0.066 0.061 0.312 0.064 0.043 0.330

β 0.855 0 0.680 0.821 0 0.651

δ 6.676 -65.661 48.722 8.444 -115.349 36.265

ν - - - 7.425 5.570 4.051

n 400 250 150 400 250 150

λ 2.145 0.757 - - - -

ρZ -0.472 0.953 - - - -

σZu 6.819 × 10−10 7.304×10−11 - - - -

σZv 3.404 × 10−12 1.540×10−14 - - - -

R2 (%) 2.77 0.37 - - - -



Table 3. Simulation results

GARCH-M (1, 1) parameters - conditional normality

Method Median Coverage of 95% CI First-stage K-S statistic Fit of Fit of

Wald LM R2 (%) Weak IV Normal instrument (%) regressor (%)

Experiment I - S&P data (true slope parameter = 6.676)

Infeasible 7.90 97.4 93.7 2.19 0.087 0.107 100.0 100.0

Kernel 2.79 92.3 94.1 2.33 0.204 0.216 10.7 97.5

Engle-Ng 6.31 98.2 95.6 1.99 0.048 0.094 46.4 90.5

Experiment II- Yen-dollar data (true slope parameter = -65.661)

Infeasible -41.73 81.8 92.6 0.76 0.095 0.328 100.0 100.0

Kernel -13.72 19.3 73.7 2.73 0.583 0.797 28.7 96.0

Engle-Ng -28.87 66.6 97.8 2.28 0.111 0.349 22.8 88.9

Experiment III- Excess holding yield data (true slope parameter = 48.736)

Infeasible 76.68 89.8 92.8 14.82 - - 100.0 100.0

Kernel 72.75 88.2 93.2 14.75 - - 30.7 85.3

Engle-Ng 79.71 96.0 94.0 12.23 - - 66.5 77.1



Table 4. Simulation results

GARCH-M (1, 1) parameters - conditional t

Method Median Coverage of 95% CI First-stage Fit of Fit of

Wald LM R2 (%) instrument (%) regressor (%)

Experiment IV - S&P data (true slope parameter = 8.444)

Infeasible 9.60 97.1 94.3 1.66 100.0 100.0

Kernel 3.00 68.6 90.3 3.61 10.7 94.9

Engle-Ng 7.26 92.1 95.7 2.27 49.3 87.8

Experiment V - Yen-dollar data (true slope parameter = -115.349)

Infeasible -46.16 72.2 92.3 0.62 100.0 100.0

Kernel -10.81 7.8 71.4 3.70 23.9 92.4

Engle-Ng -32.31 48.8 98.5 1.32 20.1 89.1

Experiment VI - Excess holding yield data (true slope parameter = 36.265)

Infeasible 54.95 95.3 91.2 17.11 100.0 100.0

Kernel 0.89 28.4 92.4 26.21 22.3 26.0

Engle-Ng 3.59 35.4 80.9 10.81 51.3 26.8



Table 5. Simulation results

Details of nonparametric estimators

Method Mean estimation Variance estimation Sum of 10 squared Instrument regression Regressor regression

bandwidth lag length bandwidth/bins lag length autocorrelation Constant Slope Constant Slope

Experiment I - S&P data - conditional normality

Kernel 1.99 1.00 1.84 1.00 2.61 0.001 0.532 0.000 1.000

Engle-Ng 1.99 1.00 2.01 1.47 2.73 0.000 0.991 0.000 1.023

Experiment II- Yen-dollar data - conditional normality

Kernel 1.97 1.00 1.80 1.00 0.05 0.001 0.252 0.000 0.990

Engle-Ng 1.97 1.00 2.00 1.61 0.14 0.001 0.447 0.000 1.040

Experiment III- Excess holding yield data - conditional normality

Kernel 1.82 1.00 1.32 1.00 1.81 0.000 1.141 0.000 1.013

Engle-Ng 1.82 1.00 2.40 1.09 2.03 0.000 1.899 0.000 1.041

Experiment IV - S&P data - conditional t

Kernel 1.95 1.00 1.58 1.00 1.28 0.001 0.300 0.000 0.997

Engle-Ng 1.95 1.00 2.06 1.42 0.85 -0.000 0.879 0.000 1.027

Experiment V- Yen-dollar data - conditional t

Kernel 1.66 1.00 1.40 1.00 0.06 0.001 0.065 0.000 0.986

Engle-Ng 1.66 1.00 2.04 1.66 0.15 0.001 0.248 0.000 1.057

Experiment VI- Excess holding yield data - conditional t

Kernel 1.05 1.86 0.69 1.82 0.51 0.005 0.015 0.007 0.015

Engle-Ng 1.05 1.86 3.58 1.39 1.53 0.001 0.078 0.007 0.018



Table 6. Estimation results

Robust standard errors in parentheses

Estimator Kernel Engle-Ng GARCH-M

constant ¡0:002
(0:007)

¡0:006
(0:010)

¡0:009
(0:010)

S&P 500 returns be2
t 2:112

(4:155)
4:585
(5:916)

6:676
(5:852)

1965:1-1997:12 Wald 95% CI [¡6:0:10:2] [¡7:0;16:1] [¡4:8;18:1]

LM 95% CI [¡9:4;11:3] [¡12:7;20:7]

1st stage R2 (%) 5.26 2.02

Mean estimation: bandwidth 1.09 1.09

Mean esimation: lag length 1 1

Variance estimation: bandwidth/bins 1.01 2

Variance estimation: lag length 1 1

constant 0:014
(0:005)

0:158
(0:280)

0:059
(0:087)

Yen-dollar returns be2
t ¡20:041

(6:537)
¡200:103

(349:85)
¡65:661
(98:284)

1978:10-1998:12 Wald 95% CI [¡32:8;¡7:3] [¡885:8;485:6] [¡240:2; 145:1]

LM 95% CI [¡34:3; 53:8] [¡1; ¡43:2] [ [51:2; 1]

1st stage R2 (%) 5.07 0.38

Mean estimation: bandwidth 1.09 1.09

Mean estimation: lag length 1 1

Variance estimation: Bandwith/bins 0.52 2

Variance estimation: lag length 1 1

constant
¡£10¡2¢ 0:007

(0:030)
0:059
(0:017)

0:001
(0:001)

Excess holding yield be2
t 184:271

(94:918)
41:903
(35:754)

48:722
(16:508)

1959:1-2000:2 Wald 95% CI [¡1:7;370:3] [¡28:1;111:9] [16:4;81:1]

LM 95% CI [¡1000; 1000] [¡235:4;110:3]

1st stage R2 (%) 16.35 21.56

Mean estimation: bandwidth 0.28 0.28

Mean estimation: lag length 1 1

Variance estimation: bandwidth/bins 0.06 4

Variance estimation: lag length 1 1














